找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Robot Kinematics; J. Lenar?i?,M. M. Stani?i? Book 2000 Springer Science+Business Media Dordrecht 2000 automation.biomechanics.

[復(fù)制鏈接]
樓主: 贊美
31#
發(fā)表于 2025-3-26 21:03:42 | 只看該作者
32#
發(fā)表于 2025-3-27 04:31:26 | 只看該作者
On Isotropic Sets of Points in the Plane. Application to the Design of Robot Architecturesy connecting together these points, we define families of isotropic manipulators. This paper is devoted to planar manipulators, the concepts being currently extended to their spatial counterparts. Furthermore, only manipulators with revolute joints are considered here.
33#
發(fā)表于 2025-3-27 05:50:41 | 只看該作者
34#
發(fā)表于 2025-3-27 10:15:33 | 只看該作者
35#
發(fā)表于 2025-3-27 15:00:03 | 只看該作者
Lecture Notes in Computer Science structure of industrial robotic systems and mechanisms. These dyads may be combined serially to form a complex open chain or, when connected back to the fixed link, may be joined so as to form a closed chain; e.g. a platform or mechanism. Finally, we present a numerical design case study which demonstrate the utility of the synthesis technique.
36#
發(fā)表于 2025-3-27 20:27:41 | 只看該作者
37#
發(fā)表于 2025-3-27 23:41:06 | 只看該作者
Unit Quaternion and CRV: Complementary Non-Singular Representations of Rigid-Body Orientationuseful for interpolating between orientations. Rotations about fixed axes, the minimum angular displacement transformations between body orientations shown by Juttler (1998) to be great circles in quaternion space, are shown here to be a family of planar circles in CRV space.
38#
發(fā)表于 2025-3-28 05:13:19 | 只看該作者
39#
發(fā)表于 2025-3-28 07:31:27 | 只看該作者
Kinematic Synthesis of Planar Platforms with RPR, PRR, and RRR Chainsproblem is addressed through the use of constraint manifolds, the platform’s workspace defined in terms of planar quaternion coordinates. An example shows the synthesis of a platform via this methodology.
40#
發(fā)表于 2025-3-28 11:11:38 | 只看該作者
or a variety of purposes such as manipulation, manufacturing, automation, surgery, locomotion and biomechanics. The issues addressed are fundamentally kinematic in nature, including synthesis, calibration, redundancy, force control, dexterity, inverse and forward kinematics, kinematic singularities,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 06:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绥中县| 长沙市| 霍城县| 高唐县| 宁陕县| 介休市| 文水县| 凯里市| 长丰县| 余干县| 年辖:市辖区| 宜都市| 衡山县| 睢宁县| 夏津县| 汶川县| 逊克县| 资阳市| 仙居县| 桂林市| 鄂托克前旗| 赤壁市| 和平区| 旌德县| 封丘县| 彭阳县| 巨鹿县| 大化| 宁蒗| 治多县| 广宗县| 苏尼特右旗| 寿光市| 湖南省| 新泰市| 台山市| 峨眉山市| 巴林右旗| 闵行区| 阿拉善盟| 嵊泗县|