找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Robot Kinematics; J. Lenar?i?,M. M. Stani?i? Book 2000 Springer Science+Business Media Dordrecht 2000 automation.biomechanics.

[復(fù)制鏈接]
樓主: 贊美
31#
發(fā)表于 2025-3-26 21:03:42 | 只看該作者
32#
發(fā)表于 2025-3-27 04:31:26 | 只看該作者
On Isotropic Sets of Points in the Plane. Application to the Design of Robot Architecturesy connecting together these points, we define families of isotropic manipulators. This paper is devoted to planar manipulators, the concepts being currently extended to their spatial counterparts. Furthermore, only manipulators with revolute joints are considered here.
33#
發(fā)表于 2025-3-27 05:50:41 | 只看該作者
34#
發(fā)表于 2025-3-27 10:15:33 | 只看該作者
35#
發(fā)表于 2025-3-27 15:00:03 | 只看該作者
Lecture Notes in Computer Science structure of industrial robotic systems and mechanisms. These dyads may be combined serially to form a complex open chain or, when connected back to the fixed link, may be joined so as to form a closed chain; e.g. a platform or mechanism. Finally, we present a numerical design case study which demonstrate the utility of the synthesis technique.
36#
發(fā)表于 2025-3-27 20:27:41 | 只看該作者
37#
發(fā)表于 2025-3-27 23:41:06 | 只看該作者
Unit Quaternion and CRV: Complementary Non-Singular Representations of Rigid-Body Orientationuseful for interpolating between orientations. Rotations about fixed axes, the minimum angular displacement transformations between body orientations shown by Juttler (1998) to be great circles in quaternion space, are shown here to be a family of planar circles in CRV space.
38#
發(fā)表于 2025-3-28 05:13:19 | 只看該作者
39#
發(fā)表于 2025-3-28 07:31:27 | 只看該作者
Kinematic Synthesis of Planar Platforms with RPR, PRR, and RRR Chainsproblem is addressed through the use of constraint manifolds, the platform’s workspace defined in terms of planar quaternion coordinates. An example shows the synthesis of a platform via this methodology.
40#
發(fā)表于 2025-3-28 11:11:38 | 只看該作者
or a variety of purposes such as manipulation, manufacturing, automation, surgery, locomotion and biomechanics. The issues addressed are fundamentally kinematic in nature, including synthesis, calibration, redundancy, force control, dexterity, inverse and forward kinematics, kinematic singularities,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 06:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
河源市| 疏勒县| 黄大仙区| 武陟县| 南江县| 陆河县| 陇西县| 新邵县| 庄浪县| 株洲市| 巴林右旗| 辽源市| 天水市| 渑池县| 克拉玛依市| 馆陶县| 嘉禾县| 桑日县| 张掖市| 昔阳县| 双峰县| 梁河县| 娱乐| 阿巴嘎旗| 扬州市| 张掖市| 田林县| 库尔勒市| 西乌| 张掖市| 临颍县| 庐江县| 大石桥市| 新乡市| 禹州市| 肥西县| 内乡县| 乌拉特后旗| 陆良县| 台山市| 瑞金市|