找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Rings, Modules and Factorizations; Graz, Austria, Febru Alberto Facchini,Marco Fontana,Bruce Olberding Conference proceedings 2

[復(fù)制鏈接]
樓主: Madison
21#
發(fā)表于 2025-3-25 05:31:48 | 只看該作者
22#
發(fā)表于 2025-3-25 10:31:00 | 只看該作者
23#
發(fā)表于 2025-3-25 14:51:50 | 只看該作者
24#
發(fā)表于 2025-3-25 16:35:44 | 只看該作者
A Survey on the Local Invertibility of Ideals in Commutative Rings,Let . be an integral domain. We give an overview on connections between the (.)-finite character property of . (i.e., each nonzero element of . is contained in finitely many (.)-maximal ideals) and problems of local invertibility of ideals.
25#
發(fā)表于 2025-3-25 22:28:38 | 只看該作者
,Idempotence and Divisoriality in?Prüfer-Like Domains,Let . be a Prüfer .-multiplication domain, where . is a semistar operation on .. We show that certain ideal-theoretic properties related to idempotence and divisoriality hold in Prüfer domains, and we use the associated semistar Nagata ring of . to show that the natural counterparts of these properties also hold in ..
26#
發(fā)表于 2025-3-26 00:22:45 | 只看該作者
Classifying Modules in Add of a Class of Modules with Semilocal Endomorphism Rings,We present a dimension theory for modules in ., where . is a class of modules with semilocal endomorphism rings satisfying certain smallness conditions. For example, if . is the class of all finitely presented modules over a semilocal ring ., then we get cardinal invariants which describe pure projective .-modules up?to isomorphism.
27#
發(fā)表于 2025-3-26 06:38:06 | 只看該作者
,When Two Principal Star Operations Are?the?Same,We study when two fractional ideals of the same integral domain generate the same star operation.
28#
發(fā)表于 2025-3-26 09:06:00 | 只看該作者
29#
發(fā)表于 2025-3-26 15:02:32 | 只看該作者
https://doi.org/10.1007/978-3-030-43416-8multiplicative ideal theory; integer-valued polynomial; monoid; factorization; commutative ring; Prufer r
30#
發(fā)表于 2025-3-26 17:09:43 | 只看該作者
978-3-030-43418-2Springer Nature Switzerland AG 2020
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
个旧市| 洞口县| 龙山县| 腾冲县| 喀喇沁旗| 鄂伦春自治旗| 兴文县| 原平市| 上林县| 华宁县| 湾仔区| 滕州市| 晴隆县| 伊吾县| 应用必备| 思南县| 龙州县| 淮滨县| 长沙市| 沙河市| 中西区| 响水县| 南汇区| 柞水县| 靖西县| 兴安盟| 巴青县| 永吉县| 阿坝县| 普兰店市| 临高县| 玛曲县| 滨海县| 靖宇县| 绥江县| 奉贤区| 伊川县| 会同县| 阳原县| 辰溪县| 河池市|