找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Rings, Modules and Factorizations; Graz, Austria, Febru Alberto Facchini,Marco Fontana,Bruce Olberding Conference proceedings 2

[復(fù)制鏈接]
樓主: Madison
21#
發(fā)表于 2025-3-25 05:31:48 | 只看該作者
22#
發(fā)表于 2025-3-25 10:31:00 | 只看該作者
23#
發(fā)表于 2025-3-25 14:51:50 | 只看該作者
24#
發(fā)表于 2025-3-25 16:35:44 | 只看該作者
A Survey on the Local Invertibility of Ideals in Commutative Rings,Let . be an integral domain. We give an overview on connections between the (.)-finite character property of . (i.e., each nonzero element of . is contained in finitely many (.)-maximal ideals) and problems of local invertibility of ideals.
25#
發(fā)表于 2025-3-25 22:28:38 | 只看該作者
,Idempotence and Divisoriality in?Prüfer-Like Domains,Let . be a Prüfer .-multiplication domain, where . is a semistar operation on .. We show that certain ideal-theoretic properties related to idempotence and divisoriality hold in Prüfer domains, and we use the associated semistar Nagata ring of . to show that the natural counterparts of these properties also hold in ..
26#
發(fā)表于 2025-3-26 00:22:45 | 只看該作者
Classifying Modules in Add of a Class of Modules with Semilocal Endomorphism Rings,We present a dimension theory for modules in ., where . is a class of modules with semilocal endomorphism rings satisfying certain smallness conditions. For example, if . is the class of all finitely presented modules over a semilocal ring ., then we get cardinal invariants which describe pure projective .-modules up?to isomorphism.
27#
發(fā)表于 2025-3-26 06:38:06 | 只看該作者
,When Two Principal Star Operations Are?the?Same,We study when two fractional ideals of the same integral domain generate the same star operation.
28#
發(fā)表于 2025-3-26 09:06:00 | 只看該作者
29#
發(fā)表于 2025-3-26 15:02:32 | 只看該作者
https://doi.org/10.1007/978-3-030-43416-8multiplicative ideal theory; integer-valued polynomial; monoid; factorization; commutative ring; Prufer r
30#
發(fā)表于 2025-3-26 17:09:43 | 只看該作者
978-3-030-43418-2Springer Nature Switzerland AG 2020
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
类乌齐县| 铜梁县| 凤山县| 清远市| 佛学| 安新县| 翁源县| 元阳县| 南江县| 尼勒克县| 芜湖市| 沙坪坝区| 马龙县| 建水县| 松潘县| 黔江区| 大庆市| 宽甸| 仁寿县| 哈密市| 桃源县| 襄汾县| 吉木萨尔县| 四子王旗| 和田市| 股票| 玉溪市| 临江市| 道孚县| 紫阳县| 谷城县| 米林县| 康乐县| 普陀区| 开封市| 合川市| 常德市| 天台县| 寿光市| 襄城县| 新安县|