找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Ring Theory; S. K. Jain,S. Tariq Rizvi Conference proceedings 1997 Springer Science+Business Media New York 1997 Excel.Finite.

[復(fù)制鏈接]
樓主: FERN
51#
發(fā)表于 2025-3-30 10:26:47 | 只看該作者
52#
發(fā)表于 2025-3-30 14:48:17 | 只看該作者
53#
發(fā)表于 2025-3-30 17:53:55 | 只看該作者
https://doi.org/10.1007/978-3-540-88562-7e sufficient conditions on the rings for their direct product to be 2-primal. We also show that the ring of formal power series over a 2-primal ring (or even a ring satisfying (PS I)) need not be 2-primal.
54#
發(fā)表于 2025-3-30 23:52:24 | 只看該作者
55#
發(fā)表于 2025-3-31 04:31:13 | 只看該作者
https://doi.org/10.1007/978-1-4612-1978-1Excel; Finite; Lie; Morphism; algebra; cooperation; development; eXist; endomorphism ring; mathematics; ring; r
56#
發(fā)表于 2025-3-31 06:07:00 | 只看該作者
978-1-4612-7364-6Springer Science+Business Media New York 1997
57#
發(fā)表于 2025-3-31 09:12:30 | 只看該作者
58#
發(fā)表于 2025-3-31 14:18:26 | 只看該作者
,Splitting Theorems and a Problem of Müller,s condition is used in our main results to generalize a splitting theoren of C. Faith, and it is also used to provide a large class of self-injective rings on which a question of B. J. Müller has an affirmative answer.
59#
發(fā)表于 2025-3-31 21:02:27 | 只看該作者
Decompositions of D1 Modules,omplements are summands. Modules with this special property are called extending modules or C1 modules. We investigate decomposition properties of dual-extending (D1) modules, those modules which are supplemented and for which each supplement is a summand. The notions of hollowness and dual Goldie d
60#
發(fā)表于 2025-3-31 22:10:36 | 只看該作者
Right Cones in Groups,he cones of (right) linearly ordered groups on the one hand and valuation rings, in particular right chain domains, on the other. The ideal theory of right cones is described, the rank one right cones are classified, and three problems are raised.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 23:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
天等县| 朝阳市| 大连市| 云和县| 同德县| 南澳县| 洮南市| 扎兰屯市| 扎鲁特旗| 屏边| 札达县| 石城县| 万州区| 武山县| 泗阳县| 阜宁县| 于都县| 金秀| 无棣县| 娱乐| 宜兴市| 凭祥市| 治多县| 九台市| 会宁县| 江城| 扎兰屯市| 响水县| 永川市| 衡阳市| 新丰县| 临澧县| 东平县| 两当县| 台东市| 石台县| 十堰市| 丰城市| 土默特右旗| 五家渠市| 宁国市|