找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Real and Complex Analysis with Applications; Michael Ruzhansky,Yeol Je Cho,Iván Area Book 2017 Springer Nature Singapore Pte L

[復(fù)制鏈接]
樓主: 珍珠無(wú)
41#
發(fā)表于 2025-3-28 16:29:44 | 只看該作者
https://doi.org/10.1007/978-981-99-3734-9its properties. With the help of this extended fractional derivative operator, we also defined new extensions of some hypergeometric functions and determined their integral representations, linear and bilinear generating relations.
42#
發(fā)表于 2025-3-28 21:07:57 | 只看該作者
Sunanda Das,Shampa Sengupta,Priyanka Das equation is proposed. Our approach is based on the connection coefficients of the Shannon wavelet and collocation method for constructing the algebraic equivalent representation of the problem. Also, the Shannon approximation is applied to solve one type of nonlinear integral equation arising from
43#
發(fā)表于 2025-3-29 02:50:08 | 只看該作者
44#
發(fā)表于 2025-3-29 04:30:43 | 只看該作者
45#
發(fā)表于 2025-3-29 11:08:17 | 只看該作者
46#
發(fā)表于 2025-3-29 11:25:45 | 只看該作者
Advances in Real and Complex Analysis with Applications
47#
發(fā)表于 2025-3-29 16:23:25 | 只看該作者
48#
發(fā)表于 2025-3-29 21:43:12 | 只看該作者
49#
發(fā)表于 2025-3-30 00:30:49 | 只看該作者
Certain Image Formulae and Fractional Kinetic Equations Involving Extended Hypergeometric Functionslus. Some new image formulae are obtained by applying specific integral transforms on resulting image formulae. We also acquired generalization of fractional kinetic equations involving extended hypergeometric functions.
50#
發(fā)表于 2025-3-30 04:15:54 | 只看該作者
The Compact Approximation Property for Weighted Spaces of Holomorphic Mappings,ompact approximation property if and only if the predual . of the space . consisting of all holomorphic mappings . (complex plane) with . has the compact approximation property, where . is a radial weight defined on a balanced open subset . of . such that . contains all the polynomials. We have also
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 05:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南皮县| 清河县| 石首市| 巴青县| 体育| 富民县| 旺苍县| 宣化县| 安远县| 合江县| 兴国县| 福贡县| 威海市| 徐水县| 色达县| 泰安市| 宿州市| 贞丰县| 泽州县| 荆门市| 西乌| 南雄市| 石林| 东方市| 寿阳县| 昭平县| 醴陵市| 楚雄市| 乐亭县| 兴安盟| 石台县| 正阳县| 黔西县| 沽源县| 庄河市| 高唐县| 北流市| 岐山县| 临夏市| 孟连| 宁南县|