找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Quantum Mechanics; Contemporary Trends Alessandro Michelangeli,Gianfausto Dell‘Antonio Book 2017 Springer International Publis

[復制鏈接]
樓主: Helmet
51#
發(fā)表于 2025-3-30 10:34:30 | 只看該作者
52#
發(fā)表于 2025-3-30 15:28:43 | 只看該作者
53#
發(fā)表于 2025-3-30 17:06:36 | 只看該作者
Bao T. Nguyen,Om Prakash,Anh H. Vofree Laplacian in the smaller regime . ∈ [2,?3). These estimates are implied by a recent result concerning the .. boundedness of the wave operators for the perturbed Laplacian. Our approach, however, is more direct and relatively simple, and could potentially be useful to prove optimal weighted estimates also in the regime . ≥ 3.
54#
發(fā)表于 2025-3-30 23:33:39 | 只看該作者
55#
發(fā)表于 2025-3-31 03:20:32 | 只看該作者
Thi-Bao-Tien Tran,Te-Hua Fang,Dinh-Quan Doanion to the existence of a frame of Bloch states for the crystal which is both continuous and periodic with respect to the crystal momentum. Instead, . measures the possibility to impose a further time-reversal symmetry constraint on the Bloch frame.
56#
發(fā)表于 2025-3-31 06:53:28 | 只看該作者
,Chern and Fu–Kane–Mele Invariants as Topological Obstructions,ion to the existence of a frame of Bloch states for the crystal which is both continuous and periodic with respect to the crystal momentum. Instead, . measures the possibility to impose a further time-reversal symmetry constraint on the Bloch frame.
57#
發(fā)表于 2025-3-31 11:40:39 | 只看該作者
58#
發(fā)表于 2025-3-31 14:48:39 | 只看該作者
59#
發(fā)表于 2025-3-31 21:27:23 | 只看該作者
Relative-Zeta and Casimir Energy for a Semitransparent Hyperplane Selecting Transverse Modes,e singular perturbation of .. associated to the presence of a delta interaction supported by a hyperplane. In our setting the operatorial parameter ., which is related to the strength of the perturbation, is of the kind . = .(?..), where ?.. is the free Laplacian in ..(..). Thus . may depend on the
60#
發(fā)表于 2025-4-1 01:22:04 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 04:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
明水县| 商洛市| 昌吉市| 香港 | 景泰县| 长宁县| 若羌县| 伊川县| 崇文区| 昌平区| 重庆市| 洪泽县| 攀枝花市| 闽侯县| 襄汾县| 周口市| 友谊县| 康马县| 新宾| 溧阳市| 舞阳县| 金沙县| 睢宁县| 南昌市| 毕节市| 临武县| 黔江区| 鄂托克旗| 巩义市| 越西县| 海原县| 邢台市| 平潭县| 阳谷县| 宣恩县| 洞口县| 城固县| 伊宁县| 瓮安县| 平远县| 于都县|