找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Phase Space Analysis of Partial Differential Equations; In Honor of Ferrucci Antonio Bove,Daniele Del Santo,M.K. Venkatesha Mur

[復(fù)制鏈接]
樓主: 相持不下
21#
發(fā)表于 2025-3-25 05:14:27 | 只看該作者
Complexification in the Energiewendecs of its hamiltonian flow which imply: 1. The operator .. is essentially self-adjoint and the propagators .. are bounded between (conveniently related) generalized Sobolev spaces. 2. The propagators .. are generalized Fourier integral operators.
22#
發(fā)表于 2025-3-25 09:31:41 | 只看該作者
Forward Look at Research Perspectives,ectly the classical decay estimates with sharp bounds. Although the computations are elementary and the definition of the Oseen kernels goes back to the 1911 paper of this author, we were not able to find the simple explicit expression below in the literature.
23#
發(fā)表于 2025-3-25 12:22:41 | 只看該作者
24#
發(fā)表于 2025-3-25 18:05:47 | 只看該作者
25#
發(fā)表于 2025-3-25 22:29:40 | 只看該作者
Advances in Phase Space Analysis of Partial Differential Equations978-0-8176-4861-9Series ISSN 1421-1750 Series E-ISSN 2374-0280
26#
發(fā)表于 2025-3-26 00:28:49 | 只看該作者
Dania A. El-Kebbe,Christoph Dannemost every . with respect to the perimeter measure of ., some tangent of . at . is a vertical halfspace. This is a partial extension of a theorem of Franchi-Serapioni-Serra Cassano in step 2 Carnot groups.
27#
發(fā)表于 2025-3-26 07:26:29 | 只看該作者
Sophie Baudic,Gérard H. E. Duchampive index on H. in terms of the heat kernel. That characterization can be extended to positive indexes using Bernstein inequalities. As a corollary we obtain a proof of refined Sobolev inequalities in . spaces.
28#
發(fā)表于 2025-3-26 12:24:55 | 只看該作者
Franco Ruzzenenti,Brian D. Fathperbolic symmetrizer, its relationships with the concept of Bezout matrix, its perturbations which originate the so–called quasi-symmetrizer and its applications to Cauchy problems for linear weakly hyperbolic equations.
29#
發(fā)表于 2025-3-26 13:12:32 | 只看該作者
30#
發(fā)表于 2025-3-26 17:13:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 19:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
崇阳县| 灵川县| 金湖县| 台中市| 海宁市| 上思县| 乌拉特中旗| 礼泉县| 镇安县| 鲁甸县| 九龙县| 厦门市| 黄骅市| 绥宁县| 岳西县| 丹巴县| 于田县| 大邑县| 辉南县| 韩城市| 九江县| 栾川县| 耿马| 许昌市| 泽库县| 通州区| 沁阳市| 龙陵县| 大石桥市| 霍城县| 普兰店市| 昌黎县| 日照市| 铜梁县| 读书| 萝北县| 团风县| 科尔| 肇源县| 浮山县| 安阳市|