找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Phase Space Analysis of Partial Differential Equations; In Honor of Ferrucci Antonio Bove,Daniele Del Santo,M.K. Venkatesha Mur

[復(fù)制鏈接]
樓主: 相持不下
21#
發(fā)表于 2025-3-25 05:14:27 | 只看該作者
Complexification in the Energiewendecs of its hamiltonian flow which imply: 1. The operator .. is essentially self-adjoint and the propagators .. are bounded between (conveniently related) generalized Sobolev spaces. 2. The propagators .. are generalized Fourier integral operators.
22#
發(fā)表于 2025-3-25 09:31:41 | 只看該作者
Forward Look at Research Perspectives,ectly the classical decay estimates with sharp bounds. Although the computations are elementary and the definition of the Oseen kernels goes back to the 1911 paper of this author, we were not able to find the simple explicit expression below in the literature.
23#
發(fā)表于 2025-3-25 12:22:41 | 只看該作者
24#
發(fā)表于 2025-3-25 18:05:47 | 只看該作者
25#
發(fā)表于 2025-3-25 22:29:40 | 只看該作者
Advances in Phase Space Analysis of Partial Differential Equations978-0-8176-4861-9Series ISSN 1421-1750 Series E-ISSN 2374-0280
26#
發(fā)表于 2025-3-26 00:28:49 | 只看該作者
Dania A. El-Kebbe,Christoph Dannemost every . with respect to the perimeter measure of ., some tangent of . at . is a vertical halfspace. This is a partial extension of a theorem of Franchi-Serapioni-Serra Cassano in step 2 Carnot groups.
27#
發(fā)表于 2025-3-26 07:26:29 | 只看該作者
Sophie Baudic,Gérard H. E. Duchampive index on H. in terms of the heat kernel. That characterization can be extended to positive indexes using Bernstein inequalities. As a corollary we obtain a proof of refined Sobolev inequalities in . spaces.
28#
發(fā)表于 2025-3-26 12:24:55 | 只看該作者
Franco Ruzzenenti,Brian D. Fathperbolic symmetrizer, its relationships with the concept of Bezout matrix, its perturbations which originate the so–called quasi-symmetrizer and its applications to Cauchy problems for linear weakly hyperbolic equations.
29#
發(fā)表于 2025-3-26 13:12:32 | 只看該作者
30#
發(fā)表于 2025-3-26 17:13:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 19:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
芦溪县| 财经| 谢通门县| 道孚县| 东乡族自治县| 松桃| 当雄县| 石棉县| 肥东县| 宣城市| 景东| 宣城市| 社旗县| 瑞金市| 南昌县| 和平县| 团风县| 尉犁县| 武胜县| 淳安县| 南澳县| 化德县| 保亭| 隆子县| 凤台县| 怀集县| 金山区| 大埔区| 定西市| 石门县| 广昌县| 简阳市| 景东| 昭觉县| 汉源县| 湖南省| 湛江市| 普兰店市| 永康市| 南充市| 龙门县|