找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness; Józef Bana?,Mohamed Jleli,Calogero Vetro Book 2017 Springer N

[復(fù)制鏈接]
查看: 9839|回復(fù): 53
樓主
發(fā)表于 2025-3-21 19:09:11 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱(chēng)Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness
影響因子2023Józef Bana?,Mohamed Jleli,Calogero Vetro
視頻videohttp://file.papertrans.cn/150/149210/149210.mp4
發(fā)行地址Presents a survey of results concerning classical measures of noncompactness and their role in fixed-point theory and operator theory.Discusses the applications to the solvability of nonlinear integra
圖書(shū)封面Titlebook: Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness;  Józef Bana?,Mohamed Jleli,Calogero Vetro Book 2017 Springer N
影響因子.This book offers a comprehensive treatment of the theory of measures of noncompactness. It discusses various applications of the theory of measures of noncompactness, in particular, by addressing the results and methods of fixed-point theory. The concept of a measure of noncompactness is very useful for the mathematical community working in nonlinear analysis. Both these theories are especially useful in investigations connected with differential equations, integral equations, functional integral equations and optimization theory. Thus, one of the book’s central goals is to collect and present sufficient conditions for the solvability of such equations. The results are established in miscellaneous function spaces, and particular attention is paid to fractional calculus..
Pindex Book 2017
The information of publication is updating

書(shū)目名稱(chēng)Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness影響因子(影響力)




書(shū)目名稱(chēng)Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness被引頻次




書(shū)目名稱(chēng)Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness被引頻次學(xué)科排名




書(shū)目名稱(chēng)Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness年度引用




書(shū)目名稱(chēng)Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness年度引用學(xué)科排名




書(shū)目名稱(chēng)Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness讀者反饋




書(shū)目名稱(chēng)Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:13:36 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:12:04 | 只看該作者
地板
發(fā)表于 2025-3-22 08:21:01 | 只看該作者
: ,econstruction of?,ary ,istories ,oofined and continuous on the real half-axis and tempered by a given function. Moreover, we show the applicability of those measures of noncompactness in the theory of nonlinear functional integral equations.
5#
發(fā)表于 2025-3-22 09:57:25 | 只看該作者
Gene Order and Phylogenetic Informationscription of the methods, we use them to investigate the topological structure of solution sets for some fractional equations. Our assumptions and proofs are expressed in terms of the Kuratowski measure of noncompactness.
6#
發(fā)表于 2025-3-22 13:33:17 | 只看該作者
7#
發(fā)表于 2025-3-22 20:54:07 | 只看該作者
8#
發(fā)表于 2025-3-22 21:12:29 | 只看該作者
9#
發(fā)表于 2025-3-23 01:23:11 | 只看該作者
Measures of Noncompactness in the Space of Continuous and Bounded Functions Defined on the Real HalOverview:
10#
發(fā)表于 2025-3-23 08:33:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 22:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
襄汾县| 瑞昌市| 鲁山县| 内江市| 年辖:市辖区| 宣威市| 中宁县| 芜湖市| 黔江区| 刚察县| 柯坪县| 长丰县| 全椒县| 鸡西市| 安泽县| 襄垣县| 垣曲县| 三江| 六枝特区| 鹤庆县| 青铜峡市| 武城县| 桓仁| 达州市| 彝良县| 额敏县| 巴楚县| 凌云县| 马尔康县| 安义县| 深泽县| 东安县| 普洱| 甘泉县| 大城县| 乐清市| 巴青县| 舟山市| 利津县| 华容县| 新晃|