找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices; Manan Suri Book 2017 Springer (India) Pvt. Ltd. 2017 Low-power Co

[復(fù)制鏈接]
樓主: 味覺沒有
41#
發(fā)表于 2025-3-28 15:56:51 | 只看該作者
https://doi.org/10.1007/BFb0060998atility, high write and read speed, and outstanding endurance. The basic cell of STT-MRAM, the spin-transfer torque magnetic tunnel junction (STT-MTJ), is a resistive memory that can be switched by electrical current. STT-MTJs are nevertheless usually not considered as memristors as they feature onl
42#
發(fā)表于 2025-3-28 22:15:06 | 只看該作者
43#
發(fā)表于 2025-3-28 23:08:05 | 只看該作者
Yves Guivarc’h,Lizhen Ji,J. C. Taylordedicated central processor. With the end of Dennard scaling and the resulting slowdown in Moore’s law, the IT industry is turning its attention to non-Von Neumann (non-VN) architectures, and in particular, to computing architectures motivated by the human brain. One family of such non-VN computing
44#
發(fā)表于 2025-3-29 06:16:56 | 只看該作者
45#
發(fā)表于 2025-3-29 08:33:32 | 只看該作者
Mathematics: Theory & ApplicationsRAM [.] for synaptic emulation in dedicated neuromorphic hardware. Most of these works justify the use of RRAM devices in hybrid learning hardware on grounds of their inherent advantages, such as ultra-high density, high endurance, high retention, CMOS compatibility, possibility of 3D integration, a
46#
發(fā)表于 2025-3-29 14:38:27 | 只看該作者
https://doi.org/10.1007/0-8176-4466-0al spike-timing-dependent plasticity (STDP) learning rule and can allow the design of learning systems. Such systems can be built with memristive devices of extremely diverse physics and behaviors and are particularly robust to device variations and imperfections. The present work investigates the t
47#
發(fā)表于 2025-3-29 17:24:05 | 只看該作者
Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices978-81-322-3703-7Series ISSN 1867-4925 Series E-ISSN 1867-4933
48#
發(fā)表于 2025-3-29 19:45:05 | 只看該作者
https://doi.org/10.1007/BFb0060998In this chapter, theory, circuit design methodologies and possible applications of Cellular Nanoscale Networks (CNNs) exploiting memristor technology are reviewed. Memristor-based CNNs platforms (MCNNs) make use of memristors to realize analog multiplication circuits that are essential to perform CNN calculation with low power and small area.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 08:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临西县| 六安市| 福建省| 璧山县| 深水埗区| 通道| 保康县| 林周县| 朝阳县| 甘谷县| 正阳县| 莎车县| 濮阳市| 观塘区| 周宁县| 剑川县| 调兵山市| 孟连| 万荣县| 礼泉县| 莱西市| 云林县| 南部县| 永寿县| 信阳市| 怀化市| 龙游县| 东阿县| 西平县| 渭源县| 甘肃省| 利川市| 长兴县| 黑龙江省| 东乡| 郧西县| 清水县| 信宜市| 荣成市| 莲花县| 红安县|