找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Neural Networks – ISNN 2018; 15th International S Tingwen Huang,Jiancheng Lv,Alexander V. Tuzikov Conference proceedings 2018 S

[復(fù)制鏈接]
樓主: TIBIA
31#
發(fā)表于 2025-3-26 22:31:05 | 只看該作者
Fast Convergent Capsule Network with Applications in MNISTn neural network. In this paper, a new activation function is proposed for the capsule network and the least weight loss is added to the loss function. The experiment shows that the improved capsule network improves the convergence speed of the network, increases the generalization ability, and makes the network more efficient.
32#
發(fā)表于 2025-3-27 04:34:06 | 只看該作者
Neural Network Model of Unconscious representatives of given class. These networks generate their self-reproducible descendants which can exchange patterns with each other and generate self-reproducible networks of a higher level representing wider classes of objects. We also give some examples of applications of this model.
33#
發(fā)表于 2025-3-27 05:49:36 | 只看該作者
34#
發(fā)表于 2025-3-27 12:37:41 | 只看該作者
35#
發(fā)表于 2025-3-27 15:15:29 | 只看該作者
Complex-Valued Deep Belief Networksing of complex-valued deep neural networks. Experiments on the MNIST dataset using different network architectures show better results of the complex-valued networks compared to their real-valued counterparts, when complex-valued deep belief networks are used for pretraining them.
36#
發(fā)表于 2025-3-27 18:33:02 | 只看該作者
37#
發(fā)表于 2025-3-28 00:49:32 | 只看該作者
38#
發(fā)表于 2025-3-28 05:33:23 | 只看該作者
Conference proceedings 2018.The 98 revised regular papers presented in this volume were carefully reviewed and selected from 214 submissions. The papers cover many?topics of neural network-related research including intelligent control, neurodynamic analysis, bio-signal, bioinformatics and biomedical?engineering, clustering,
39#
發(fā)表于 2025-3-28 10:12:28 | 只看該作者
40#
發(fā)表于 2025-3-28 12:17:25 | 只看該作者
Identification of Vessel Kinetics Based?on?Neural Networks via?Concurrent Learningh and stay bounded within a small neighborhood of ideal weights without a persistence of excitation condition. Finally, by resorting to the Lyapunov theory, the performance of the proposed kinetics identification method is analyzed.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 15:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和林格尔县| 玉田县| 南郑县| 大竹县| 渝中区| 宁武县| 沂源县| 德钦县| 鄢陵县| 建平县| 淮南市| 满城县| 泰宁县| 隆化县| 苏尼特左旗| 资阳市| 察隅县| 夹江县| 乌什县| 耒阳市| 仁布县| 连南| 巴里| 黄山市| 永登县| 通化市| 葫芦岛市| 浦城县| 大埔区| 广昌县| 江阴市| 洛扎县| 乐业县| 安陆市| 武陟县| 金塔县| 通渭县| 清河县| 绥滨县| 曲麻莱县| 兴隆县|