找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Neural Networks - ISNN 2007; 4th International Sy Derong Liu,Shumin Fei,Changyin Sun Conference proceedings 2007 Springer-Verla

[復(fù)制鏈接]
樓主: 推翻
21#
發(fā)表于 2025-3-25 06:18:17 | 只看該作者
Social Media and Social Computing,models. The objective is to control the conditional PDF of the system output to follow a given target function by using dynamic neural network models. B-spline neural networks are used to model the dynamic output probability density functions (PDFs), then the concerned problem is transferred into th
22#
發(fā)表于 2025-3-25 09:24:13 | 只看該作者
Elena Zheleva,Evimaria Terzi,Lise Getoorle neural networks (SNN). The SNN is uniquely determined by the design of the global integral sliding mode surface, the output of which replaces the corrective control, and FNN is applied to mimic the equivalent control. In this scheme, the bounds of the uncertainties and the extern disturbance are
23#
發(fā)表于 2025-3-25 14:20:03 | 只看該作者
Elena Zheleva,Evimaria Terzi,Lise Getoor basis function(RBF) neural network. The system uncertainty is approximated by RBF neural networks, and a parameter update law is presented for approximating the system uncertainty. In each step, the control scheme is derived in terms of linear matrix inequalities (LMI’s). A robust adaptive controll
24#
發(fā)表于 2025-3-25 15:58:10 | 只看該作者
Elena Zheleva,Evimaria Terzi,Lise Getoortomotive engines. The sliding mode control (SMC) structure is used and a new sliding surface is developed in the paper. The RBF network adaptation and the control law are derived using the Lyapunov method so that the entire system stability and the network convergence are guaranteed. The developed m
25#
發(fā)表于 2025-3-26 00:01:51 | 只看該作者
Elena Zheleva,Evimaria Terzi,Lise Getoorel with same fuzzy sets is established. To make the states of the closed-loop system follow those of the reference model, a controller including of neuro-fuzzy adaptive and linear feedback term is designed. The linear feedback parameters can be solved by LMI approach. Adaptive term is used to compen
26#
發(fā)表于 2025-3-26 03:13:34 | 只看該作者
Michael J. Zakour,David F. Gillespie algorithm of FNN can adjust not only the connection weights but also the sigmoid function parameters. This makes FNN characterized with online learning and high learning speed. The FNN has the following advantages when applied to temperature control problems: high learning ability, which considerab
27#
發(fā)表于 2025-3-26 05:55:52 | 只看該作者
28#
發(fā)表于 2025-3-26 09:31:30 | 只看該作者
Direct Adaptive Fuzzy-Neural Control for MIMO Nonlinear Systems Via BacksteppingOverview:
29#
發(fā)表于 2025-3-26 14:45:14 | 只看該作者
A Novel Cross Layer Power Control Game Algorithm Based on Neural Fuzzy Connection Admission ControllOverview:
30#
發(fā)表于 2025-3-26 18:41:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 20:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
濮阳市| 娄底市| 镇江市| 洞头县| 康平县| 灵寿县| 满城县| 礼泉县| 额尔古纳市| 正镶白旗| 利津县| 闽侯县| 巨鹿县| 都兰县| 六盘水市| 长葛市| 河西区| 大荔县| 建宁县| 呼玛县| 越西县| 新密市| 苍溪县| 塘沽区| 平南县| 宁城县| 精河县| 阜阳市| 鹿泉市| 清丰县| 康马县| 辽阳县| 舞阳县| 自治县| 观塘区| 抚顺市| 宁阳县| 德庆县| 临湘市| 资溪县| 金坛市|