找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Neural Networks - ISNN 2006; Third International Jun Wang,Zhang Yi,Hujun Yin Conference proceedings 2006 Springer-Verlag Berli

[復(fù)制鏈接]
樓主: Falter
21#
發(fā)表于 2025-3-25 03:54:02 | 只看該作者
Qilian Liang,Xin Liu,Baoju Zhangssing and pattern recognition, and it plays a very important role in the applications of human-computer interfaces and human emotion analysis. This paper proposes an algorithm called BoostingTree, which is based on the conventional Adaboost and uses tree-structure to convert seven facial expressions
22#
發(fā)表于 2025-3-25 10:53:08 | 只看該作者
23#
發(fā)表于 2025-3-25 15:03:46 | 只看該作者
Zhao Zhang,Baoju Zhang,Hongwei Liu,Bo Zhangtes the capacities of biological brains for signal processing in pattern recognition. Its accuracy and efficiency are demonstrated in this report on an application to human face recognition, with comparisons of performance with conventional pattern recognition algorithms.
24#
發(fā)表于 2025-3-25 16:38:37 | 只看該作者
Liantao Bai,Yaxing Liu,Jun Wang,Hengpeng Xuhere a quick human “glance” is sufficient to recognize a “familiar” face. Face recognition has recently attracted more research aimed at developing reliable recognition by machines. Current face recognition methods rely on detecting certain features within a face and using these features for face re
25#
發(fā)表于 2025-3-25 21:18:55 | 只看該作者
https://doi.org/10.1007/978-981-99-1260-5 of both labeled and unlabeled data. In face recognition, collecting labeled examples costs human effort, while vast amounts of unlabeled data are often readily available and offer some additional information. In this paper, based on Support Vector Machine (SVM), we introduce a novel semi-supervised
26#
發(fā)表于 2025-3-26 03:30:35 | 只看該作者
Zheming Sun,Chunjuan Bo,Dong Wang function (RBF) classifier. NMFs can represent a facial image based on either local or holistic features by constraining the sparseness of the basis images. The comparative experiments are carried out between NMFs with low or high sparseness and principle component analysis (PCA) for recognizing fac
27#
發(fā)表于 2025-3-26 08:23:39 | 只看該作者
Yukun Wang,Wenbin Guo,Xiao Zhangre subspaces learned by principal component analysis (PCA). The two classifiers employ the same classification model named a polynomial neural network (PNN). The outputs of the two classifiers are fused to make the final decision. The effectiveness of the proposed method has been demonstrated in exp
28#
發(fā)表于 2025-3-26 10:27:35 | 只看該作者
29#
發(fā)表于 2025-3-26 15:36:12 | 只看該作者
30#
發(fā)表于 2025-3-26 18:23:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
水富县| 彭泽县| 永福县| 法库县| 南康市| 探索| 丰镇市| 台北市| 白山市| 宣化县| 象州县| 高淳县| 宜川县| 平湖市| 宝鸡市| 萝北县| 双江| 玛多县| 宜章县| 藁城市| 南召县| 班玛县| 漳州市| 铁力市| 八宿县| 北票市| 米易县| 万盛区| 廊坊市| 合阳县| 北碚区| 商都县| 阿坝| 突泉县| 信宜市| 太和县| 左云县| 竹山县| 深水埗区| 怀化市| 板桥市|