找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Neural Networks - ISNN 2006; Third International Jun Wang,Zhang Yi,Hujun Yin Conference proceedings 2006 Springer-Verlag Berli

[復(fù)制鏈接]
樓主: Chylomicron
41#
發(fā)表于 2025-3-28 17:18:03 | 只看該作者
42#
發(fā)表于 2025-3-28 21:05:50 | 只看該作者
43#
發(fā)表于 2025-3-29 02:10:40 | 只看該作者
Qianbin Chen,Weixiao Meng,Liqiang Zhaocognitive processes. However, several current models incorporated learning algorithms that apparently have questionable descriptive validity or qualitative plausibleness. The present research attempts to bridge this gap by identifying five critical issues overlooked by previous modeling research and
44#
發(fā)表于 2025-3-29 04:55:08 | 只看該作者
45#
發(fā)表于 2025-3-29 07:13:56 | 只看該作者
46#
發(fā)表于 2025-3-29 13:16:40 | 只看該作者
Yingjie Wang,Wei Luo,Changxiang Shenon of functions is developed by using integral transform. Using the developed representation, an approximation order estimation for the bell-shaped neural networks is obtained. The obtained result reveals that the approximation accurately of the bell-shaped neural networks depends not only on the nu
47#
發(fā)表于 2025-3-29 17:18:35 | 只看該作者
Terence R. Cannings,Sue G. Talleynsity or upper bound estimation on how a multivariate function can be approximated by the networks, and consequently, the essential approximation ability of networks cannot be revealed. In this paper, by establishing both upper and lower bound estimations on approximation order, the essential approx
48#
發(fā)表于 2025-3-29 22:04:40 | 只看該作者
Communications in an era of networksis a linear combination of wavelets, that can be updated during the networks training process. As a result the approximate error is significantly decreased. The BP algorithm and the QR decomposition based training method for the proposed WNN is derived. The obtained results indicate that this new ty
49#
發(fā)表于 2025-3-30 00:52:02 | 只看該作者
50#
發(fā)表于 2025-3-30 04:39:42 | 只看該作者
Online university degree programmesof diffusion operator and the techniques of inequality, we investigate positive invariant set, global exponential stability, and then obtain the exponential dissipativity of the neural networks under consideration. Our results can extend and improve earlier ones. An example is given to demonstrate t
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆昌县| 平昌县| 奉化市| 洛川县| 军事| 汉寿县| 通州市| 收藏| 蓬溪县| 固始县| 上犹县| 大埔区| 白银市| 仪陇县| 阿拉善右旗| 定西市| 钟祥市| 辽宁省| 西林县| 邢台市| 沈丘县| 石嘴山市| 鹤峰县| 竹北市| 沈阳市| 无为县| 开江县| 金塔县| 临江市| 耒阳市| 南郑县| 无极县| 诸城市| 宜良县| 曲麻莱县| 虎林市| 宜都市| 兴宁市| 洪雅县| 岑溪市| 昌宁县|