找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Neural Networks - ISNN 2006; Third International Jun Wang,Zhang Yi,Hujun Yin Conference proceedings 2006 Springer-Verlag Berli

[復(fù)制鏈接]
樓主: Chylomicron
41#
發(fā)表于 2025-3-28 17:18:03 | 只看該作者
42#
發(fā)表于 2025-3-28 21:05:50 | 只看該作者
43#
發(fā)表于 2025-3-29 02:10:40 | 只看該作者
Qianbin Chen,Weixiao Meng,Liqiang Zhaocognitive processes. However, several current models incorporated learning algorithms that apparently have questionable descriptive validity or qualitative plausibleness. The present research attempts to bridge this gap by identifying five critical issues overlooked by previous modeling research and
44#
發(fā)表于 2025-3-29 04:55:08 | 只看該作者
45#
發(fā)表于 2025-3-29 07:13:56 | 只看該作者
46#
發(fā)表于 2025-3-29 13:16:40 | 只看該作者
Yingjie Wang,Wei Luo,Changxiang Shenon of functions is developed by using integral transform. Using the developed representation, an approximation order estimation for the bell-shaped neural networks is obtained. The obtained result reveals that the approximation accurately of the bell-shaped neural networks depends not only on the nu
47#
發(fā)表于 2025-3-29 17:18:35 | 只看該作者
Terence R. Cannings,Sue G. Talleynsity or upper bound estimation on how a multivariate function can be approximated by the networks, and consequently, the essential approximation ability of networks cannot be revealed. In this paper, by establishing both upper and lower bound estimations on approximation order, the essential approx
48#
發(fā)表于 2025-3-29 22:04:40 | 只看該作者
Communications in an era of networksis a linear combination of wavelets, that can be updated during the networks training process. As a result the approximate error is significantly decreased. The BP algorithm and the QR decomposition based training method for the proposed WNN is derived. The obtained results indicate that this new ty
49#
發(fā)表于 2025-3-30 00:52:02 | 只看該作者
50#
發(fā)表于 2025-3-30 04:39:42 | 只看該作者
Online university degree programmesof diffusion operator and the techniques of inequality, we investigate positive invariant set, global exponential stability, and then obtain the exponential dissipativity of the neural networks under consideration. Our results can extend and improve earlier ones. An example is given to demonstrate t
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汶川县| 宁德市| 贵定县| 桃园市| 新民市| 万年县| 巴东县| 通州市| 金阳县| 新津县| 青州市| 泽州县| 博罗县| 玉山县| 会理县| 大埔区| 赣州市| 马公市| 云梦县| 新竹市| 苏尼特右旗| 横峰县| 东至县| 嫩江县| 南丰县| 定南县| 河北区| 应用必备| 杭锦后旗| 庆元县| 泊头市| 霍城县| 镇康县| 德昌县| 建瓯市| 绥化市| 保山市| 南澳县| 松溪县| 澄迈县| 宿州市|