找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Mathematical Fluid Mechanics; Lecture Notes of the Josef Málek,Jind?ich Ne?as,Mirko Rokyta Book 2000 Springer-Verlag Berlin Hei

[復(fù)制鏈接]
樓主: Cyclone
11#
發(fā)表于 2025-3-23 12:53:05 | 只看該作者
Some Current Research in Decoding Theory,-linear terms. Furthermore, a simple but efficient preconditioning technique for the resulting linear systems is introduced. For the Navier-Stokes equations a Chorin-type projection method with a stabilized pressure discretization is used. Numerical examples demonstrate the efficiency of our approach.
12#
發(fā)表于 2025-3-23 16:18:49 | 只看該作者
Wen-Ching Winnie Li,Min Lu,Chenying Wangmodel. Then we survey the current state of the mathematical theory of fluid-dynamic limits for BGK systems and for discrete velocity models of relaxation type. This is done for the case that the limit is a scalar conservation law or a system of two equations.
13#
發(fā)表于 2025-3-23 18:03:12 | 只看該作者
14#
發(fā)表于 2025-3-24 02:06:22 | 只看該作者
https://doi.org/10.1007/978-3-642-57308-8Navier-Stokes equation; Navier-Stokes equations; fluid mechanics; fluid models limit; incompressible and
15#
發(fā)表于 2025-3-24 04:31:56 | 只看該作者
16#
發(fā)表于 2025-3-24 09:33:12 | 只看該作者
17#
發(fā)表于 2025-3-24 13:08:47 | 只看該作者
18#
發(fā)表于 2025-3-24 16:37:42 | 只看該作者
Clemens Adelmann,Arne Winterhofrms have got same asymptotic behavior either at a singularity point of the boundary, or at infinity. The characteristic feature of these spaces is that their norms are composed from both, norms of angular parts in the detached terms and norms of asymptotic remainders. The developed approach is descr
19#
發(fā)表于 2025-3-24 20:24:57 | 只看該作者
Wen-Ching Winnie Li,Min Lu,Chenying Wangrst, we discuss the emergence of the compressible Euler equations for an ideal gas in the fluid-dynamic limit of the Boltzmann equation or of the BGK model. Then we survey the current state of the mathematical theory of fluid-dynamic limits for BGK systems and for discrete velocity models of relaxat
20#
發(fā)表于 2025-3-25 02:11:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 15:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兰溪市| 黄石市| 永泰县| 英超| 容城县| 上饶市| 徐水县| 玉溪市| 吉木萨尔县| 衢州市| 桂东县| 任丘市| 三门县| 浙江省| 普兰店市| 明星| 铁力市| 祁连县| 五寨县| 凭祥市| 苏尼特左旗| 新晃| 孝感市| 平乡县| 武穴市| 迁西县| 祁东县| 淳安县| 张家港市| 铅山县| 城口县| 永宁县| 喀喇沁旗| 林芝县| 中宁县| 丰宁| 无极县| 乌拉特中旗| 鹤岗市| 新泰市| 得荣县|