找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Learning Automata and Intelligent Optimization; Javidan Kazemi Kordestani,Mehdi Razapoor Mirsaleh, Book 2021 The Editor(s) (if

[復(fù)制鏈接]
查看: 28636|回復(fù): 42
樓主
發(fā)表于 2025-3-21 16:53:27 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱(chēng)Advances in Learning Automata and Intelligent Optimization
影響因子2023Javidan Kazemi Kordestani,Mehdi Razapoor Mirsaleh,
視頻videohttp://file.papertrans.cn/149/148676/148676.mp4
發(fā)行地址Provides leading studies in the application of learning automata (LA) along with different heuristics for solving optimization problems.Collects recent advances and developments in learning automata-b
學(xué)科分類(lèi)Intelligent Systems Reference Library
圖書(shū)封面Titlebook: Advances in Learning Automata and Intelligent Optimization;  Javidan Kazemi Kordestani,Mehdi Razapoor Mirsaleh, Book 2021 The Editor(s) (if
影響因子This book is devoted to the leading research in applying learning automaton (LA) and heuristics for solving benchmark and real-world optimization problems. The ever-increasing application of the LA as a promising reinforcement learning technique in artificial intelligence makes it necessary to provide scholars, scientists, and engineers with a practical discussion on LA solutions for optimization. The book starts with a brief introduction to LA models for optimization. Afterward, the research areas related to LA and optimization are addressed as bibliometric network analysis. Then, LA‘s application in behavior control in evolutionary computation,?and memetic models of?object migration automata?and cellular learning automata for solving NP hard?problems are considered. Next, an overview of multi-population methods for DOPs, LA‘s application in dynamic optimization problems (DOPs), and the function evaluation management in evolutionary multi-population for DOPs are discussed... Highlighted benefits??.? Presents the latest advances in learning automata-based optimization approaches..? Addresses the memetic models of learning automata for solving NP-hard problems..? Discusses the appli
Pindex Book 2021
The information of publication is updating

書(shū)目名稱(chēng)Advances in Learning Automata and Intelligent Optimization影響因子(影響力)




書(shū)目名稱(chēng)Advances in Learning Automata and Intelligent Optimization影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Advances in Learning Automata and Intelligent Optimization網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Advances in Learning Automata and Intelligent Optimization網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Advances in Learning Automata and Intelligent Optimization被引頻次




書(shū)目名稱(chēng)Advances in Learning Automata and Intelligent Optimization被引頻次學(xué)科排名




書(shū)目名稱(chēng)Advances in Learning Automata and Intelligent Optimization年度引用




書(shū)目名稱(chēng)Advances in Learning Automata and Intelligent Optimization年度引用學(xué)科排名




書(shū)目名稱(chēng)Advances in Learning Automata and Intelligent Optimization讀者反饋




書(shū)目名稱(chēng)Advances in Learning Automata and Intelligent Optimization讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:37:53 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:04:44 | 只看該作者
地板
發(fā)表于 2025-3-22 08:06:44 | 只看該作者
5#
發(fā)表于 2025-3-22 10:32:41 | 只看該作者
6#
發(fā)表于 2025-3-22 12:55:43 | 只看該作者
7#
發(fā)表于 2025-3-22 17:52:42 | 只看該作者
Book 2021lems. The ever-increasing application of the LA as a promising reinforcement learning technique in artificial intelligence makes it necessary to provide scholars, scientists, and engineers with a practical discussion on LA solutions for optimization. The book starts with a brief introduction to LA m
8#
發(fā)表于 2025-3-22 21:29:20 | 只看該作者
1868-4394 ects recent advances and developments in learning automata-bThis book is devoted to the leading research in applying learning automaton (LA) and heuristics for solving benchmark and real-world optimization problems. The ever-increasing application of the LA as a promising reinforcement learning tech
9#
發(fā)表于 2025-3-23 03:39:15 | 只看該作者
10#
發(fā)表于 2025-3-23 08:47:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 02:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安乡县| 喀喇沁旗| 崇左市| 监利县| 安乡县| 石棉县| 黄浦区| 全椒县| 深水埗区| 华安县| 博白县| 宜章县| 栾城县| 梁平县| 清徐县| 青川县| 交口县| 眉山市| 九龙城区| 松阳县| 吉隆县| 吉木萨尔县| 林周县| 晋中市| 铜陵市| 易门县| 文水县| 靖安县| 兴义市| 苍溪县| 噶尔县| 台中县| 镇赉县| 丰城市| 蓬莱市| 岑巩县| 隆林| 金阳县| 息烽县| 西华县| 郸城县|