找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Knowledge Discovery and Data Mining; 23rd Pacific-Asia Co Qiang Yang,Zhi-Hua Zhou,Sheng-Jun Huang Conference proceedings 2019 S

[復(fù)制鏈接]
樓主: Spouse
31#
發(fā)表于 2025-3-26 21:19:32 | 只看該作者
32#
發(fā)表于 2025-3-27 02:35:50 | 只看該作者
33#
發(fā)表于 2025-3-27 08:41:40 | 只看該作者
34#
發(fā)表于 2025-3-27 12:51:55 | 只看該作者
Passenger Demand Forecasting with Multi-Task Convolutional Recurrent Neural Networks smart transportation systems. However, existing works are limited in fully utilizing multi-modal features. First, these models either include excessive data from weakly correlated regions or neglect the correlations with similar but spatially distant regions. Second, they incorporate the influence
35#
發(fā)表于 2025-3-27 16:03:29 | 只看該作者
36#
發(fā)表于 2025-3-27 17:52:39 | 只看該作者
37#
發(fā)表于 2025-3-27 23:44:15 | 只看該作者
Topic Attentional Neural Network for Abstractive Document Summarizationer architecture, have achieved impressive progress in abstractive document summarization. However, the saliency of summary, which is one of the key factors for document summarization, still needs improvement. In this paper, we propose Topic Attentional Neural Network (TANN) which incorporates topic
38#
發(fā)表于 2025-3-28 03:58:48 | 只看該作者
39#
發(fā)表于 2025-3-28 09:49:51 | 只看該作者
EFCNN: A Restricted Convolutional Neural Network for Expert Findingut still heavily suffers from low matching quality due to inefficient representations for experts and topics (queries). In this paper, we present an interesting model, referred to as EFCNN, based on restricted convolution to address the problem. Different from traditional models for expert finding,
40#
發(fā)表于 2025-3-28 13:56:13 | 只看該作者
CRESA: A Deep Learning Approach to Competing Risks, Recurrent Event Survival Analysisevent survival analysis in the presence of one or more . in each recurrent time-step, in order to obtain the probabilistic relationship between the input covariates and the distribution of event times. Since traditional survival analysis techniques suffer from drawbacks due to strong parametric mode
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 07:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江孜县| 犍为县| 监利县| 阳泉市| 琼海市| 小金县| 三河市| 屯门区| 昔阳县| 朝阳区| 拜城县| 桃源县| 威海市| 依安县| 凌云县| 郧西县| 布尔津县| 济阳县| 新田县| 沈阳市| 营口市| 高雄市| 泌阳县| 常山县| 石柱| 上林县| 民和| 崇仁县| 安多县| 肇东市| 包头市| 眉山市| 龙山县| 清苑县| 新建县| 周至县| 浙江省| 英德市| 仁怀市| 兴海县| 陇川县|