找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Knowledge Discovery and Data Mining; 23rd Pacific-Asia Co Qiang Yang,Zhi-Hua Zhou,Sheng-Jun Huang Conference proceedings 2019 S

[復(fù)制鏈接]
樓主: Spouse
31#
發(fā)表于 2025-3-26 21:19:32 | 只看該作者
32#
發(fā)表于 2025-3-27 02:35:50 | 只看該作者
33#
發(fā)表于 2025-3-27 08:41:40 | 只看該作者
34#
發(fā)表于 2025-3-27 12:51:55 | 只看該作者
Passenger Demand Forecasting with Multi-Task Convolutional Recurrent Neural Networks smart transportation systems. However, existing works are limited in fully utilizing multi-modal features. First, these models either include excessive data from weakly correlated regions or neglect the correlations with similar but spatially distant regions. Second, they incorporate the influence
35#
發(fā)表于 2025-3-27 16:03:29 | 只看該作者
36#
發(fā)表于 2025-3-27 17:52:39 | 只看該作者
37#
發(fā)表于 2025-3-27 23:44:15 | 只看該作者
Topic Attentional Neural Network for Abstractive Document Summarizationer architecture, have achieved impressive progress in abstractive document summarization. However, the saliency of summary, which is one of the key factors for document summarization, still needs improvement. In this paper, we propose Topic Attentional Neural Network (TANN) which incorporates topic
38#
發(fā)表于 2025-3-28 03:58:48 | 只看該作者
39#
發(fā)表于 2025-3-28 09:49:51 | 只看該作者
EFCNN: A Restricted Convolutional Neural Network for Expert Findingut still heavily suffers from low matching quality due to inefficient representations for experts and topics (queries). In this paper, we present an interesting model, referred to as EFCNN, based on restricted convolution to address the problem. Different from traditional models for expert finding,
40#
發(fā)表于 2025-3-28 13:56:13 | 只看該作者
CRESA: A Deep Learning Approach to Competing Risks, Recurrent Event Survival Analysisevent survival analysis in the presence of one or more . in each recurrent time-step, in order to obtain the probabilistic relationship between the input covariates and the distribution of event times. Since traditional survival analysis techniques suffer from drawbacks due to strong parametric mode
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鸡西市| 天祝| 岳西县| 江都市| 姚安县| 广汉市| 股票| 甘泉县| 洛南县| 石柱| 禹州市| 玉溪市| 象州县| 丹巴县| 滕州市| 翁源县| 张家港市| 平舆县| 闻喜县| 河东区| 汶川县| 金乡县| 林西县| 富阳市| 漯河市| 虎林市| 正阳县| 承德县| 大姚县| 静安区| 璧山县| 定陶县| 纳雍县| 郯城县| 株洲县| 固安县| 张北县| 广东省| 深圳市| 桃江县| 上犹县|