找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Knowledge Discovery and Data Mining; 22nd Pacific-Asia Co Dinh Phung,Vincent S. Tseng,Lida Rashidi Conference proceedings 2018

[復(fù)制鏈接]
查看: 40837|回復(fù): 55
樓主
發(fā)表于 2025-3-21 19:35:55 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Advances in Knowledge Discovery and Data Mining
期刊簡(jiǎn)稱22nd Pacific-Asia Co
影響因子2023Dinh Phung,Vincent S. Tseng,Lida Rashidi
視頻videohttp://file.papertrans.cn/149/148635/148635.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Advances in Knowledge Discovery and Data Mining; 22nd Pacific-Asia Co Dinh Phung,Vincent S. Tseng,Lida Rashidi Conference proceedings 2018
影響因子.This three-volume set, LNAI 10937, 10938, and 10939, constitutes the thoroughly refereed proceedings of the 22nd Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD 2018, held in Melbourne, VIC, Australia, in June 2018. ..The 164 full papers were carefully reviewed and selected from 592 submissions. The volumes present papers focusing on new ideas, original research results and practical development experiences from all KDD related areas, including data mining, data warehousing, machine learning, artificial intelligence, databases, statistics, knowledge engineering, visualization, decision-making systems and the emerging applications...?.
Pindex Conference proceedings 2018
The information of publication is updating

書目名稱Advances in Knowledge Discovery and Data Mining影響因子(影響力)




書目名稱Advances in Knowledge Discovery and Data Mining影響因子(影響力)學(xué)科排名




書目名稱Advances in Knowledge Discovery and Data Mining網(wǎng)絡(luò)公開度




書目名稱Advances in Knowledge Discovery and Data Mining網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Advances in Knowledge Discovery and Data Mining被引頻次




書目名稱Advances in Knowledge Discovery and Data Mining被引頻次學(xué)科排名




書目名稱Advances in Knowledge Discovery and Data Mining年度引用




書目名稱Advances in Knowledge Discovery and Data Mining年度引用學(xué)科排名




書目名稱Advances in Knowledge Discovery and Data Mining讀者反饋




書目名稱Advances in Knowledge Discovery and Data Mining讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:16:33 | 只看該作者
978-3-319-93033-6Springer International Publishing AG, part of Springer Nature 2018
板凳
發(fā)表于 2025-3-22 01:44:39 | 只看該作者
Dean D. T. Maglinte,Hans Herlingerremely time consuming and expensive. In this paper we propose strategies for estimating performance of a classifier using as little labeling resource as possible. Specifically, we assume a labeling budget is given and the goal is to get a good estimate of the classifier performance using the provide
地板
發(fā)表于 2025-3-22 06:39:05 | 只看該作者
Dean D. T. Maglinte,Hans Herlingerwith social data, such as the tweet stream generated by Twitter users in chronological order. A salient, and perhaps also the most interesting, feature of such user-generated content is its never-failing novelty, which, unfortunately, would challenge most traditional pre-trained classification model
5#
發(fā)表于 2025-3-22 09:20:25 | 只看該作者
Dean D. T. Maglinte,Hans Herlinger implications, subsumptions or exclusions in a human-comprehensible and interpretable manner. However, the induction of rules with multiple labels in the head is particularly challenging, as the number of label combinations which must be taken into account for each rule grows exponentially with the
6#
發(fā)表于 2025-3-22 14:16:08 | 只看該作者
Münster Studies of Coronary Heart Diseaseassifier quality are crucial aspects of multi-label classification. In this paper, we propose a multi-structure SVM (called MSSVM) which allows the user to hypothesize multiple label interaction structures and helps to identify their importance in improving generalization performance. We design an e
7#
發(fā)表于 2025-3-22 18:47:24 | 只看該作者
Werner H. Hauss,Robert W. Wisslersemantic and syntactic features are well studied, global category information has been mostly ignored within the NN based framework. Samples with the same sentiment category should have similar vectors in represent space. Motivated by this, we propose a novel global sentiment centroids based neural
8#
發(fā)表于 2025-3-22 23:33:50 | 只看該作者
Fertilization and Embryo Culture,wever, it shows several limitations. First, random shapelet forest requires a large training cost for split threshold searching. Second, a single shapelet provides limited information for only one branch of the decision tree, resulting in insufficient accuracy and interpretability. Third, randomized
9#
發(fā)表于 2025-3-23 01:23:30 | 只看該作者
10#
發(fā)表于 2025-3-23 06:34:37 | 只看該作者
Results from In Vitro Fertilization,eads to a classifier with a reject option, that allows the user to limit the number of erroneous predictions made on the test set, without any need to reveal the true labels of the test objects. The method described in this paper works by estimating the cumulative error count on a set of predictions
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 03:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定西市| 佛教| 沛县| 菏泽市| 惠水县| 揭阳市| 木兰县| 舞阳县| 清涧县| 读书| 如皋市| 始兴县| 志丹县| 鄯善县| 舒兰市| 永嘉县| 德化县| 临江市| 嘉黎县| 临沧市| 儋州市| 云阳县| 东乡县| 遵化市| 正宁县| 崇州市| 安庆市| 保亭| 若尔盖县| 泊头市| 名山县| 宝应县| 简阳市| 渭南市| 泰兴市| 都昌县| 红河县| 赤水市| 琼海市| 敦化市| 韶山市|