找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Knowledge Discovery and Data Mining; 21st Pacific-Asia Co Jinho Kim,Kyuseok Shim,Yang-Sae Moon Conference proceedings 2017 Spri

[復(fù)制鏈接]
查看: 22130|回復(fù): 59
樓主
發(fā)表于 2025-3-21 19:19:00 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Advances in Knowledge Discovery and Data Mining
期刊簡稱21st Pacific-Asia Co
影響因子2023Jinho Kim,Kyuseok Shim,Yang-Sae Moon
視頻videohttp://file.papertrans.cn/149/148611/148611.mp4
發(fā)行地址Includes supplementary material: .Includes supplementary material:
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Advances in Knowledge Discovery and Data Mining; 21st Pacific-Asia Co Jinho Kim,Kyuseok Shim,Yang-Sae Moon Conference proceedings 2017 Spri
影響因子This two-volume set, LNAI 10234 and 10235, constitutes the thoroughly refereed proceedings of the 21st Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD 2017, held in Jeju, South Korea, in May 2017. .The 129 full papers were carefully reviewed and selected from 458 submissions. They are organized in topical sections named: classification and deep learning; social network and graph mining; privacy-preserving mining and security/risk applications; spatio-temporal and sequential data mining; clustering and anomaly detection; recommender system; feature selection; text and opinion mining; clustering and matrix factorization; dynamic, stream data mining; novel models and algorithms; behavioral data mining; graph clustering and community detection; dimensionality reduction..
Pindex Conference proceedings 2017
The information of publication is updating

書目名稱Advances in Knowledge Discovery and Data Mining影響因子(影響力)




書目名稱Advances in Knowledge Discovery and Data Mining影響因子(影響力)學(xué)科排名




書目名稱Advances in Knowledge Discovery and Data Mining網(wǎng)絡(luò)公開度




書目名稱Advances in Knowledge Discovery and Data Mining網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Advances in Knowledge Discovery and Data Mining被引頻次




書目名稱Advances in Knowledge Discovery and Data Mining被引頻次學(xué)科排名




書目名稱Advances in Knowledge Discovery and Data Mining年度引用




書目名稱Advances in Knowledge Discovery and Data Mining年度引用學(xué)科排名




書目名稱Advances in Knowledge Discovery and Data Mining讀者反饋




書目名稱Advances in Knowledge Discovery and Data Mining讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:27:23 | 只看該作者
978-3-319-57453-0Springer International Publishing AG 2017
板凳
發(fā)表于 2025-3-22 03:11:10 | 只看該作者
Ray J. Hodgson,Howard J. Rankinertain individuals/communities or may be capable of inflicting harm to oneself or others. A search engine should regulate its query completion suggestions by detecting and filtering such queries as it may hurt the user sentiments or may lead to legal issues thereby tarnishing the brand image. Hence,
地板
發(fā)表于 2025-3-22 07:42:30 | 只看該作者
Cue Exposure and Relapse Preventionhalanobis metric learning methods that map both query (unlabeled) objects and labeled objects to new coordinates by a single transformation, our method learns a transformation of labeled objects to new points in the feature space whereas query objects are kept in their original coordinates. This met
5#
發(fā)表于 2025-3-22 10:17:32 | 只看該作者
Behavioral Treatment of Binge Drinkingandomly dropping units and/or connections on each iteration of the training algorithm. Dropout and DropConnect are characteristic examples of such regularizers, that are widely popular among practitioners. However, a drawback of such approaches consists in the fact that their postulated probability
6#
發(fā)表于 2025-3-22 15:18:12 | 只看該作者
7#
發(fā)表于 2025-3-22 18:32:08 | 只看該作者
Behavioral Treatment of Alcoholismabeled by multiple annotators has become a common scenario these days. Since annotators have different expertise, labels acquired from them might not be perfectly accurate. This paper derives an optimization framework to solve this task through estimating the expertise of each annotator and the labe
8#
發(fā)表于 2025-3-23 00:29:59 | 只看該作者
https://doi.org/10.1007/978-3-030-91526-1cross groups while respecting their idiosyncrasies. The model is built using techniques that are now considered standard in the statistical parameter estimation literature, namely, Hierarchical Dirichlet processes (HDP) and Hierarchical Generalized Linear Models (HGLM), and therefore, we name it “In
9#
發(fā)表于 2025-3-23 03:19:05 | 只看該作者
Shannon C. Trotter,Suchita Sampathed implicitly by a set of training data used for ‘learning’ .. It is an important component for entity resolution, network link prediction, protein-protein interaction prediction, and so on. Although deep neural networks (DNNs) outperform other methods in many tasks and have thus attracted the atten
10#
發(fā)表于 2025-3-23 05:58:04 | 只看該作者
Shannon C. Trotter,Suchita Sampathn sample-to-population alignment weights, both the clustering and the evaluation techniques need to take this into account. The purpose of this article is to advance the automatic knowledge discovery from a robust clustering result on the population level. For this purpose, we derive a novel ranking
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 04:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿城市| 阜康市| 广州市| 禹州市| 航空| 宽城| 灵宝市| 汉沽区| 沂源县| 青阳县| 五莲县| 阿拉善左旗| 周宁县| 宝山区| 旌德县| 肥乡县| 宜宾县| 永靖县| 罗田县| 壶关县| 克拉玛依市| 搜索| 新田县| 辛集市| 当涂县| 蓝田县| 南靖县| 马公市| 怀来县| 平泉县| 马公市| 孟村| 肃南| 友谊县| 桃源县| 郴州市| 莲花县| 盐山县| 深泽县| 兰西县| 大化|