找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Knowledge Discovery and Data Mining; 17th Pacific-Asia Co Jian Pei,Vincent S. Tseng,Guandong Xu Conference proceedings 2013 Spr

[復制鏈接]
查看: 6700|回復: 63
樓主
發(fā)表于 2025-3-21 20:01:17 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Advances in Knowledge Discovery and Data Mining
期刊簡稱17th Pacific-Asia Co
影響因子2023Jian Pei,Vincent S. Tseng,Guandong Xu
視頻videohttp://file.papertrans.cn/149/148609/148609.mp4
發(fā)行地址State-of-the-art research.Fast track conference proceedings.Up-to-date results in knowledge discovery and data mining
學科分類Lecture Notes in Computer Science
圖書封面Titlebook: Advances in Knowledge Discovery and Data Mining; 17th Pacific-Asia Co Jian Pei,Vincent S. Tseng,Guandong Xu Conference proceedings 2013 Spr
影響因子The two-volume set LNAI 7818 + LNAI 7819 constitutes the refereed proceedings of the 17th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2013, held in Gold Coast, Australia, in April 2013. The total of 98 papers presented in these proceedings was carefully reviewed and selected from 363 submissions. They cover the general fields of data mining and KDD extensively, including pattern mining, classification, graph mining, applications, machine learning, feature selection and dimensionality reduction, multiple information sources mining, social networks, clustering, text mining, text classification, imbalanced data, privacy-preserving data mining, recommendation, multimedia data mining, stream data mining, data preprocessing and representation.
Pindex Conference proceedings 2013
The information of publication is updating

書目名稱Advances in Knowledge Discovery and Data Mining影響因子(影響力)




書目名稱Advances in Knowledge Discovery and Data Mining影響因子(影響力)學科排名




書目名稱Advances in Knowledge Discovery and Data Mining網(wǎng)絡公開度




書目名稱Advances in Knowledge Discovery and Data Mining網(wǎng)絡公開度學科排名




書目名稱Advances in Knowledge Discovery and Data Mining被引頻次




書目名稱Advances in Knowledge Discovery and Data Mining被引頻次學科排名




書目名稱Advances in Knowledge Discovery and Data Mining年度引用




書目名稱Advances in Knowledge Discovery and Data Mining年度引用學科排名




書目名稱Advances in Knowledge Discovery and Data Mining讀者反饋




書目名稱Advances in Knowledge Discovery and Data Mining讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:32:19 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:25:40 | 只看該作者
Cutaneous Complications of Malignancyipant of a certain rank from another, we assign weights to nodes in the DAG. As such, a meeting can be modeled as a weighted DAG, from which weighted frequent interaction patterns can be discovered. Experimental results showed the effectiveness of our proposed DAG-based method for mining interaction
地板
發(fā)表于 2025-3-22 06:15:55 | 只看該作者
5#
發(fā)表于 2025-3-22 10:41:20 | 只看該作者
Ira Shetty M.D.,William A. Scott M.D.larizer. The second method belongs to the category of threshold methods, where we set a window and select the SV set from correctly classified PVs closer and farther from the decision boundaries in the case of classification. For regression, we obtain the SV set by selecting the PVs with least minim
6#
發(fā)表于 2025-3-22 13:56:49 | 只看該作者
Steven Dymarkowski MD, PhD,Hilde Bosmans PhDl studies on a large number of random and scale-free graphs, using four structurally distinguishable indexes, demonstrate that our spectral decomposition method is robust and almost always exhibits an accuracy of 70% or above.
7#
發(fā)表于 2025-3-22 20:43:19 | 只看該作者
Hubert F. Baars,Jeroen F. van der Heijdenbe finally used to construct a rule-based classifier. DICH essentially speeds up the discriminative clique-pattern mining process and solves the unlimited clique-pattern expanding problem in graph stream mining. Experimental results on two real-world graph stream data sets demonstrate that DICH can
8#
發(fā)表于 2025-3-22 23:02:56 | 只看該作者
Discovering Local Subgroups, with an Application to Fraud Detection,978-3-662-10900-7
9#
發(fā)表于 2025-3-23 03:47:11 | 只看該作者
Mining Frequent Patterns from Human Interactions in Meetings Using Directed Acyclic Graphs,978-3-8351-9088-7
10#
發(fā)表于 2025-3-23 08:18:52 | 只看該作者
Mining Appliance Usage Patterns in Smart Home Environment,978-3-642-92584-9
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 04:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
那曲县| 固阳县| 蓝山县| 饶平县| 沂南县| 共和县| 册亨县| 吕梁市| 林州市| 茌平县| 化州市| 青川县| 黄石市| 临泽县| 大理市| 成都市| 锦屏县| 百色市| 河源市| 诸城市| 凤凰县| 方山县| 洛川县| 德州市| 宣汉县| 庆元县| 荥经县| 互助| 进贤县| 黔江区| 左权县| 兴山县| 溆浦县| 东源县| 甘孜县| 芦山县| 阳山县| 嘉禾县| 平南县| 修水县| 卢湾区|