找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Kinetic Theory and Continuum Mechanics; Proceedings of a Sym Renée Gatignol,Soubbaramayer Conference proceedings 1991 Springer-

[復(fù)制鏈接]
樓主: 廚房默契
11#
發(fā)表于 2025-3-23 11:42:38 | 只看該作者
Conference proceedings 1991of Professor Henri Cabannes on the occasion of his retirement. There were about one hundred participants from nine countries: Canada, France, Germany, Italy, Japan, Norway, Portugal, the Netherlands, and the USA. Many of his past students or his colleagues were among the participants. The twenty-six
12#
發(fā)表于 2025-3-23 15:19:29 | 只看該作者
13#
發(fā)表于 2025-3-23 18:19:14 | 只看該作者
S. Matalon,R. R. Baker,P. C. Engstromven that a large class of polynomial collision operators in semidetailed balance satisfies this .-theorem. Finally, results are given concerning the global validity in time of the convergence for the case where the formal scaling of the kinetic equation leads to the linearized incompressible Navier-Stokes limit.
14#
發(fā)表于 2025-3-24 01:01:48 | 只看該作者
Neurotrophism — Another Approachlution in terms of the initial values (this, of course, would entail global existence of a mild solution). The purpose of this article is to compare the situation with the better understood one-dimensional case, spell out some crucial differences, and point out a possible way to progress.
15#
發(fā)表于 2025-3-24 03:50:25 | 只看該作者
Albrecht Struppler,Adolf Weindl models. In order to eliminate these difficulties, multiple collisions are introduced, and some symmetry properties on the models are adopted. The Euler equations are then given for discrete models with different moduli.
16#
發(fā)表于 2025-3-24 09:05:53 | 只看該作者
17#
發(fā)表于 2025-3-24 11:17:52 | 只看該作者
18#
發(fā)表于 2025-3-24 16:19:50 | 只看該作者
19#
發(fā)表于 2025-3-24 20:34:13 | 只看該作者
20#
發(fā)表于 2025-3-25 00:57:43 | 只看該作者
Asymptotic Theory of a Steady Flow of a Rarefied Gas Past Bodies for Small Knudsen Numbers978-3-322-88592-0
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 19:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永泰县| 苏尼特左旗| 太保市| 囊谦县| 通山县| 叙永县| 翁牛特旗| 甘孜县| 正镶白旗| 福鼎市| 上饶县| 当阳市| 陆良县| 二连浩特市| 加查县| 祁连县| 乐都县| 独山县| 万源市| 武鸣县| 佛冈县| 长沙市| 峡江县| 右玉县| 新和县| 梧州市| 黎川县| 新竹市| 楚雄市| 岳阳县| 吉林市| 剑阁县| 寿阳县| 泗洪县| 丘北县| 通化县| 盖州市| 兖州市| 浮山县| 垦利县| 新邵县|