找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Kinetic Theory and Continuum Mechanics; Proceedings of a Sym Renée Gatignol,Soubbaramayer Conference proceedings 1991 Springer-

[復(fù)制鏈接]
樓主: 廚房默契
11#
發(fā)表于 2025-3-23 11:42:38 | 只看該作者
Conference proceedings 1991of Professor Henri Cabannes on the occasion of his retirement. There were about one hundred participants from nine countries: Canada, France, Germany, Italy, Japan, Norway, Portugal, the Netherlands, and the USA. Many of his past students or his colleagues were among the participants. The twenty-six
12#
發(fā)表于 2025-3-23 15:19:29 | 只看該作者
13#
發(fā)表于 2025-3-23 18:19:14 | 只看該作者
S. Matalon,R. R. Baker,P. C. Engstromven that a large class of polynomial collision operators in semidetailed balance satisfies this .-theorem. Finally, results are given concerning the global validity in time of the convergence for the case where the formal scaling of the kinetic equation leads to the linearized incompressible Navier-Stokes limit.
14#
發(fā)表于 2025-3-24 01:01:48 | 只看該作者
Neurotrophism — Another Approachlution in terms of the initial values (this, of course, would entail global existence of a mild solution). The purpose of this article is to compare the situation with the better understood one-dimensional case, spell out some crucial differences, and point out a possible way to progress.
15#
發(fā)表于 2025-3-24 03:50:25 | 只看該作者
Albrecht Struppler,Adolf Weindl models. In order to eliminate these difficulties, multiple collisions are introduced, and some symmetry properties on the models are adopted. The Euler equations are then given for discrete models with different moduli.
16#
發(fā)表于 2025-3-24 09:05:53 | 只看該作者
17#
發(fā)表于 2025-3-24 11:17:52 | 只看該作者
18#
發(fā)表于 2025-3-24 16:19:50 | 只看該作者
19#
發(fā)表于 2025-3-24 20:34:13 | 只看該作者
20#
發(fā)表于 2025-3-25 00:57:43 | 只看該作者
Asymptotic Theory of a Steady Flow of a Rarefied Gas Past Bodies for Small Knudsen Numbers978-3-322-88592-0
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 23:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
调兵山市| 耿马| 徐闻县| 乌鲁木齐市| 巴中市| 伊川县| 巍山| 浮梁县| 松江区| 信丰县| 湖南省| 武定县| 昌吉市| 三明市| 德兴市| 崇明县| 南郑县| 阿合奇县| 上饶市| 广西| 会泽县| 井研县| 栾川县| 富川| 建始县| 东平县| 泽州县| 勐海县| 九江县| 葵青区| 休宁县| 岚皋县| 武城县| 纳雍县| 平潭县| 昌吉市| 阜新| 宜春市| 南投县| 大名县| 平阴县|