找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Intelligent Signal Processing and Data Mining; Theory and Applicati Petia Georgieva,Lyudmila Mihaylova,Lakhmi C Jain Book 2013

[復(fù)制鏈接]
查看: 49790|回復(fù): 47
樓主
發(fā)表于 2025-3-21 18:04:48 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Advances in Intelligent Signal Processing and Data Mining
期刊簡稱Theory and Applicati
影響因子2023Petia Georgieva,Lyudmila Mihaylova,Lakhmi C Jain
視頻videohttp://file.papertrans.cn/149/148541/148541.mp4
發(fā)行地址Computational Intelligence applied to engineering.Latest research on security and sensor networks in complex engineering systems.Written by leading experts in the field
學(xué)科分類Studies in Computational Intelligence
圖書封面Titlebook: Advances in Intelligent Signal Processing and Data Mining; Theory and Applicati Petia Georgieva,Lyudmila Mihaylova,Lakhmi C Jain Book 2013
影響因子.The book presents some of the most efficient statistical and deterministic methods for information processing and applications in order to extract targeted information and find hidden patterns. The techniques presented range from Bayesian approaches and their variations such as sequential Monte Carlo methods, Markov Chain Monte Carlo filters, Rao Blackwellization, to the biologically inspired paradigm of Neural Networks and decomposition techniques such as Empirical Mode Decomposition, Independent Component Analysis and Singular Spectrum Analysis. .?.The book is directed to the research students, professors, researchers and practitioners interested in exploring the advanced techniques in intelligent signal processing and data mining paradigms..?.
Pindex Book 2013
The information of publication is updating

書目名稱Advances in Intelligent Signal Processing and Data Mining影響因子(影響力)




書目名稱Advances in Intelligent Signal Processing and Data Mining影響因子(影響力)學(xué)科排名




書目名稱Advances in Intelligent Signal Processing and Data Mining網(wǎng)絡(luò)公開度




書目名稱Advances in Intelligent Signal Processing and Data Mining網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Advances in Intelligent Signal Processing and Data Mining被引頻次




書目名稱Advances in Intelligent Signal Processing and Data Mining被引頻次學(xué)科排名




書目名稱Advances in Intelligent Signal Processing and Data Mining年度引用




書目名稱Advances in Intelligent Signal Processing and Data Mining年度引用學(xué)科排名




書目名稱Advances in Intelligent Signal Processing and Data Mining讀者反饋




書目名稱Advances in Intelligent Signal Processing and Data Mining讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:31:30 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:45:06 | 只看該作者
地板
發(fā)表于 2025-3-22 07:41:47 | 只看該作者
5#
發(fā)表于 2025-3-22 09:31:12 | 只看該作者
Computational Intelligence in Automotive Applications,ane detection algorithms can be separated into lane modeling, feature extraction and model parameter estimation. Each of these steps is discussed in detail with examples and results. A recently proposed lane feature extraction approach, which is called the Global Lane Feature Refinement Algorithm (G
6#
發(fā)表于 2025-3-22 14:34:13 | 只看該作者
Detecting Anomalies in Sensor Signals Using Database Technology,cessed by tracking systems which allows for enhancing the provided kinematic information. In high-level fusion systems, this kinematic information can be combined with additional domain-specific data which allows for detecting object behavior and threat patterns. These systems contribute to situatio
7#
發(fā)表于 2025-3-22 18:12:05 | 只看該作者
Hierarchical Clustering for Large Data Sets,ated and the scaling of hierarchical clustering in time and memory is discussed. A new method for speeding up hierarchical clustering with cluster seeding is introduced, and this method is compared with a traditional agglomerative hierarchical, average link clustering algorithm using several interna
8#
發(fā)表于 2025-3-22 21:15:19 | 只看該作者
A Novel Framework for Object Recognition under Severe Occlusion,he comparison of assemblies of image regions with a previously stored view of a known prototype. Shape context representation and matching are employed for recovering point correspondences between the image and the prototype. Assuming that the prototype view is sufficiently similar in configuration
9#
發(fā)表于 2025-3-23 04:26:14 | 只看該作者
Historical Consistent Neural Networks: New Perspectives on Market Modeling, Forecasting and Risk Anigh degree of nonlinearity. In this chapter we deal with a special type of time-delay recurrent neural networks. In these models we understand a part of the world as a large recursive system which is only partially observable. We model and forecast all observables, avoiding the problem in open syste
10#
發(fā)表于 2025-3-23 08:03:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 07:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桦甸市| 汾西县| 西吉县| 绵阳市| 玉龙| 尼木县| 汝阳县| 霍城县| 泰顺县| 仁化县| 申扎县| 长治县| 舟山市| 义乌市| 宜昌市| 恩平市| 启东市| 遵化市| 宁蒗| 自治县| 施秉县| 龙陵县| 汝城县| 无为县| 萨迦县| 文水县| 贺兰县| 新田县| 元朗区| 临颍县| 肃宁县| 平南县| 邮箱| 鄂州市| 西贡区| 东海县| 瑞金市| 香河县| 清水河县| 青浦区| 平远县|