找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Intelligent Computing Techniques and Applications; Intelligent Systems, Faisal Saeed,Fathey Mohammed,Yousef Fazea Conference pr

[復(fù)制鏈接]
樓主: hexagon
31#
發(fā)表于 2025-3-27 00:17:21 | 只看該作者
https://doi.org/10.1007/3-540-29288-8ere trained using the TF-IDF text representation. This choice aimed to ensure a fair comparison between the algorithms. The evaluation of each model is conducted using topic coherence as the metric. The results indicate that both NMF and Bertopic give an excellent performance.
32#
發(fā)表于 2025-3-27 02:09:45 | 只看該作者
https://doi.org/10.1007/3-540-29288-8ained model was evaluated using the root mean square error (RMSE) and mean absolute error (MAE) metrics. Based on the experiment results, the Bi-LSTM model with RMSprop optimizer and 0.0001 learning rate could provide the best results with an RMSE value of 16.68 and an MAE of 12.76. As the best mode
33#
發(fā)表于 2025-3-27 07:43:48 | 只看該作者
34#
發(fā)表于 2025-3-27 12:09:31 | 只看該作者
https://doi.org/10.1007/3-540-29288-8achine Learning domain. With Scrum, we can assess the accuracy improvement of the data sets during each sprint, providing an effective means of reviewing the sprint process. The goal is to develop a system capable of identifying new viruses and disseminating that information to all mobile devices, t
35#
發(fā)表于 2025-3-27 15:04:00 | 只看該作者
Classical Methods of Statisticsg F1-score. The F1-score, a widely recognized measure of a model‘s accuracy, balances precision and recall. Specifically, it considers both false positives and false negatives, offering a nuanced evaluation of the model‘s performance. In the context of flood prediction, where the consequences of bot
36#
發(fā)表于 2025-3-27 19:27:50 | 只看該作者
37#
發(fā)表于 2025-3-27 22:45:27 | 只看該作者
Classical Methods of Statisticsase. Additionally, a cutting-edge model named BILSTM is introduced, which capitalizes on processing word sequences to predict text; this model has demonstrated superior performance compared to LSTM and GRU models in the decoding stage. The findings of this study, as measured by the Bleu performance
38#
發(fā)表于 2025-3-28 04:00:31 | 只看該作者
39#
發(fā)表于 2025-3-28 08:40:49 | 只看該作者
40#
發(fā)表于 2025-3-28 13:59:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 16:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
左权县| 长丰县| 元谋县| 宁陵县| 铁岭市| 卢氏县| 文成县| 庆城县| 玉溪市| 连平县| 昌邑市| 承德市| 前郭尔| 文成县| 宁陵县| 贵阳市| 德兴市| 彰化市| 聊城市| 嘉兴市| 上犹县| 金阳县| 新乡市| 青铜峡市| 雅江县| 繁昌县| 益阳市| 手游| 玛多县| 佳木斯市| 琼海市| 卢湾区| 广德县| 罗山县| 揭东县| 慈利县| 洪湖市| 怀宁县| 青铜峡市| 栾川县| 额敏县|