找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Hypercomplex Analysis; Graziano Gentili,Irene Sabadini,Daniele C. Struppa Book 2013 Springer-Verlag Italia 2013 Functions of h

[復(fù)制鏈接]
樓主: 祈求
11#
發(fā)表于 2025-3-23 10:28:11 | 只看該作者
Christian Krachts Mikro?sthetikn subset of the space of quaternions ? that intersects the real line and let . be the unit sphere of purely imaginary quaternions. Slice regular functions are those functions .:.→? whose restriction to the complex planes ?(.), for every ., are holomorphic maps. One of their crucial properties is tha
12#
發(fā)表于 2025-3-23 14:42:22 | 只看該作者
Susanne Komfort-Hein,Heinz Drüghdisc . under a holomorphic function . (such that .(0)=0 and .′(0)=1) always contains an open disc with radius larger than a universal constant. In this paper we prove a Bloch-Landau type Theorem for slice regular functions over the skew field ? of quaternions. If . is a regular function on the open
13#
發(fā)表于 2025-3-23 18:52:20 | 只看該作者
Susanne Komfort-Hein,Heinz Drügh in . (1<.<+∞). Applying Almansi-type decomposition theorems for null solutions to iterated Dirac operators, our Dirichlet-type problems for null solutions to iterated Dirac operators is transferred to Dirichlet-type problems for monogenic functions or harmonic functions. By introducing shifted Eule
14#
發(fā)表于 2025-3-23 23:56:09 | 只看該作者
Christian Kracht’s Micro-aestheticsar functions, which includes polynomials and power series with quaternionic coefficients. We show that every slice regular function coincides up to the first order with a unique regular function on the three-dimensional subset of reduced quaternions. We also characterize the regular functions so obt
15#
發(fā)表于 2025-3-24 02:42:55 | 只看該作者
16#
發(fā)表于 2025-3-24 08:07:03 | 只看該作者
Graziano Gentili,Irene Sabadini,Daniele C. StruppaNew trends in mathematics.Applied mathematics.International leading specialists.Includes supplementary material:
17#
發(fā)表于 2025-3-24 13:49:43 | 只看該作者
Springer INdAM Serieshttp://image.papertrans.cn/a/image/148302.jpg
18#
發(fā)表于 2025-3-24 18:49:31 | 只看該作者
Book 2013nds and techniques in the area and, in general, of promoting scientific collaboration. Particular attention is paid to the presentation of different notions of regularity for functions of hypercomplex variables, and to the study of the main features of the theories that they originate.
19#
發(fā)表于 2025-3-24 22:17:07 | 只看該作者
Christian Krachts Mikro?sthetik . and is a reproducing kernel. In the slice regular Bergman theory of the second kind we use the Representation Formula to define another Bergman kernel; this time the kernel is still defined on . but the integral representation of . requires the calculation of the integral only on .∩?(.) and the integral does not depend on ..
20#
發(fā)表于 2025-3-25 01:59:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 05:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巩留县| 东源县| 泉州市| 沐川县| 广州市| 岳普湖县| 成都市| 兴和县| 封丘县| 福州市| 奉节县| 田林县| 肃宁县| 象山县| 深州市| 咸阳市| 象州县| 临清市| 城市| 昆明市| 江津市| 盖州市| 中超| 武夷山市| 鲜城| 达拉特旗| 新河县| 新宁县| 龙井市| 丹棱县| 沈阳市| 泸定县| 长春市| 周宁县| 广昌县| 京山县| 普安县| 方山县| 葫芦岛市| 巴林右旗| 晋州市|