找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Harmonic Analysis and Operator Theory; The Stefan Samko Ann Alexandre Almeida,Luís Castro,Frank-Olme Speck Conference proceedin

[復(fù)制鏈接]
樓主: injurious
11#
發(fā)表于 2025-3-23 10:23:43 | 只看該作者
https://doi.org/10.1007/978-3-663-02375-3of operators to reduce their boundedness in grand grand Morrey spaces to the corresponding boundedness in Morrey spaces. As a result of this application, we obtain the boundedness of the Hardy-Littlewood maximal operator and Calderón–Zygmund operators in the framework of grand grand Morrey spaces.
12#
發(fā)表于 2025-3-23 14:47:59 | 只看該作者
13#
發(fā)表于 2025-3-23 20:08:05 | 只看該作者
14#
發(fā)表于 2025-3-23 23:08:46 | 只看該作者
15#
發(fā)表于 2025-3-24 05:18:20 | 只看該作者
16#
發(fā)表于 2025-3-24 08:50:38 | 只看該作者
17#
發(fā)表于 2025-3-24 13:09:41 | 只看該作者
Rupture of the Public and Private Domains,ypes of solutions of non-linear fractional differential equations. They include periodic sinks, attracting slow diverging trajectories (ASDT), attracting accelerator mode trajectories (AMT), chaotic attractors, and cascade of bifurcations type trajectories (CBTT). New features discovered include att
18#
發(fā)表于 2025-3-24 18:17:51 | 只看該作者
Rupture of the Public and Private Domains,ential operator . from one generalized Morrey spaces . to another . and from . to the weak space W . We also find conditions on . which ensure the Adams type boundedness of the . As applications of those results, the boundeness of the commutators of operators . on generalized Morrey spaces is also o
19#
發(fā)表于 2025-3-24 22:59:24 | 只看該作者
20#
發(fā)表于 2025-3-25 00:13:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 04:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上栗县| 嘉黎县| 辽阳县| 信阳市| 卓资县| 安吉县| 驻马店市| 古浪县| 韩城市| 囊谦县| 大冶市| 屏南县| 大新县| 万盛区| 扎兰屯市| 汉源县| 武鸣县| 郁南县| 巴南区| 拉萨市| 内乡县| 永登县| 太湖县| 三穗县| 大安市| 阿荣旗| 吉木萨尔县| 珠海市| 枣强县| 肇东市| 浠水县| 绿春县| 阜平县| 西峡县| 嘉善县| 浑源县| 巩义市| 蓝山县| 昌黎县| 新巴尔虎右旗| 甘德县|