找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Geometric Modeling and Processing; 6th International Co Bernard Mourrain,Scott Schaefer,Guoliang Xu Conference proceedings 2010

[復(fù)制鏈接]
樓主: HABIT
41#
發(fā)表于 2025-3-28 16:26:53 | 只看該作者
Language-Related and Learning Disordersorithm is based on an efficient culling technique that eliminates redundant curves and surfaces which obviously contain no projection from the given point. Based on this scheme, we can reduce the whole computation to considerably smaller subproblems, which are then solved using a numerical method. I
42#
發(fā)表于 2025-3-28 19:37:58 | 只看該作者
https://doi.org/10.1007/978-0-387-47672-8hand, subdivision technology has always been active in computer aided design since its invention. The flexibility and high quality of the subdivision surface makes them a powerful tool in geometry modeling and surface designing. In this paper, we combine these two ingredients together aiming at cons
43#
發(fā)表于 2025-3-29 02:34:01 | 只看該作者
44#
發(fā)表于 2025-3-29 04:36:23 | 只看該作者
Language-Related and Learning DisordersD process. For a CAD object, we can construct various computational domain with same shape but with different parameterization. One basic requirement is that the resulting parameterization should have no self-intersections. In this paper, a linear and easy-to-check sufficient condition for injectivi
45#
發(fā)表于 2025-3-29 08:19:49 | 只看該作者
46#
發(fā)表于 2025-3-29 14:45:08 | 只看該作者
https://doi.org/10.1007/978-0-387-47672-8et of points in a compact 3D domain (i.e. a finite 3D volume), some Voronoi cells of their Voronoi diagram are infinite, but in practice only the parts of the cells inside the domain are needed, as when computing the centroidal Voronoi tessellation. Such a Voronoi diagram confined to a compact domai
47#
發(fā)表于 2025-3-29 17:44:42 | 只看該作者
48#
發(fā)表于 2025-3-29 21:31:13 | 只看該作者
49#
發(fā)表于 2025-3-30 01:35:25 | 只看該作者
50#
發(fā)表于 2025-3-30 05:22:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 21:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东明县| 阿图什市| 栾城县| 淳安县| 石景山区| 松溪县| 准格尔旗| 兰考县| 克拉玛依市| 石台县| 凤凰县| 福贡县| 石首市| 积石山| 虹口区| 河池市| 张家港市| 平乐县| 浙江省| 福泉市| 全州县| 萨嘎县| 肥乡县| 岚皋县| 安达市| 浮梁县| 伊金霍洛旗| 师宗县| 江西省| 利辛县| 冕宁县| 长沙县| 宜兰市| 双城市| 安义县| 临泽县| 东宁县| 磐安县| 乐业县| 汝城县| 柏乡县|