找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Gabor Analysis; Hans G. Feichtinger,Thomas Strohmer Book 2003 Springer Science+Business Media New York 2003 Potential.Signal.a

[復(fù)制鏈接]
查看: 32202|回復(fù): 51
樓主
發(fā)表于 2025-3-21 17:01:26 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Advances in Gabor Analysis
影響因子2023Hans G. Feichtinger,Thomas Strohmer
視頻videohttp://file.papertrans.cn/149/148104/148104.mp4
學(xué)科分類Applied and Numerical Harmonic Analysis
圖書封面Titlebook: Advances in Gabor Analysis;  Hans G. Feichtinger,Thomas Strohmer Book 2003 Springer Science+Business Media New York 2003 Potential.Signal.a
影響因子The Applied and Numerical Harmonic Analysis (ANHA) book series aims to provide the engineering, mathematical, and scientific communities with significant developments in harmonic analysis, ranging from abstract har- monic analysis to basic applications. The title of the series reflects the im- portance of applications and numerical implementation, but richness and relevance of applications and implementation depend fundamentally on the structure and depth of theoretical underpinnings. Thus, from our point of view, the interleaving of theory and applications and their creative symbi- otic evolution is axiomatic. Harmonic analysis is a wellspring of ideas and applicability that has flour- ished, developed, and deepened over time within many disciplines and by means of creative cross-fertilization with diverse areas. The intricate and fundamental relationship between harmonic analysis and fields such as sig- nal processing, partial differential equations (PDEs), and image processing is reflected in our state of the art ANHA series. Our vision of modern harmonic analysis includes mathematical areas such as wavelet theory, Banach algebras, classical Fourier analysis, time- frequency ana
Pindex Book 2003
The information of publication is updating

書目名稱Advances in Gabor Analysis影響因子(影響力)




書目名稱Advances in Gabor Analysis影響因子(影響力)學(xué)科排名




書目名稱Advances in Gabor Analysis網(wǎng)絡(luò)公開度




書目名稱Advances in Gabor Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Advances in Gabor Analysis被引頻次




書目名稱Advances in Gabor Analysis被引頻次學(xué)科排名




書目名稱Advances in Gabor Analysis年度引用




書目名稱Advances in Gabor Analysis年度引用學(xué)科排名




書目名稱Advances in Gabor Analysis讀者反饋




書目名稱Advances in Gabor Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:17:37 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:28:02 | 只看該作者
地板
發(fā)表于 2025-3-22 05:40:08 | 只看該作者
Chemosensors of Ion and Molecule Recognitionrestricted to a suitable interval. Dual bases and Riesz bounds are given explicitly. The construction is based on a Zak transform for periodic functions and an unfolding operator for periodic Wilson bases. Fast algorithms for analysis and synthesis are described.
5#
發(fā)表于 2025-3-22 09:23:35 | 只看該作者
https://doi.org/10.1007/978-94-011-3973-1 are studied in continuous and discrete time setting. Explicit solutions are found in Zak transform domain. The optimizers turn out to be generically ill-localized similar to the no-go Balian—Low theorem.
6#
發(fā)表于 2025-3-22 13:52:50 | 只看該作者
7#
發(fā)表于 2025-3-22 20:57:58 | 只看該作者
8#
發(fā)表于 2025-3-22 23:57:38 | 只看該作者
https://doi.org/10.1385/1592598897ique Gabor duals (within the subspaces). Finally, we provide a necessary and sufficient condition for a square-integrable function g to generate a subspace Gabor frame in the one-dimensional, rational case. The condition is phrased in terms of the Zak transform of ..
9#
發(fā)表于 2025-3-23 01:53:27 | 只看該作者
10#
發(fā)表于 2025-3-23 09:02:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 13:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泰宁县| 阿克陶县| 荃湾区| 和平区| 麻城市| 佛学| 社旗县| 西宁市| 观塘区| 南丰县| 徐闻县| 黑河市| 济阳县| 壤塘县| 且末县| 渭源县| 华坪县| 麦盖提县| 石泉县| 长武县| 呼图壁县| 安陆市| 沁水县| 手游| 遂溪县| 高阳县| 九台市| 渭南市| 盐城市| 甘孜| 光泽县| 岢岚县| 辽宁省| 河南省| 开鲁县| 抚远县| 乐业县| 略阳县| 吉林省| 万荣县| 赞皇县|