找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Functional Analysis and Fixed-Point Theory; An Interdisciplinary Bipan Hazarika,Santanu Acharjee,Dragan S. Djordjev Book 2024 T

[復制鏈接]
樓主: Clinical-Trial
21#
發(fā)表于 2025-3-25 04:29:09 | 只看該作者
https://doi.org/10.1007/978-94-011-2268-9 on Kohlenbach hyperbolic space (KHS) in this chapter. Furthermore, for two different forms of generalized non-expansive map (NM) on KHS, certain .-convergence and strong convergence theorems utilizing the altered iteration process are proved. Finally, we show how our outcomes can be applied to non-
22#
發(fā)表于 2025-3-25 08:46:54 | 只看該作者
23#
發(fā)表于 2025-3-25 15:18:03 | 只看該作者
Polyoxometalates and Coordination Polymers,logarithmic boundedness of sequences of real numbers are introduced and tried to investigate some relations between the .—strongly harmonically summability and .—statistical logarithmic convergence in this work. We also establish some connections between . and .. It is shown that if a sequence is bo
24#
發(fā)表于 2025-3-25 17:59:10 | 只看該作者
25#
發(fā)表于 2025-3-25 23:23:44 | 只看該作者
26#
發(fā)表于 2025-3-26 00:49:09 | 只看該作者
https://doi.org/10.1007/978-1-4613-2137-8h space then the adjoint operator . of . is defined as a bounded linear operator on the dual of . which is denoted by . and defined by . for all . and .. Let . and . generate a complex number . of the operator . defined on the domain .(.), which is denoted by .. Then . is called the resolvent operat
27#
發(fā)表于 2025-3-26 05:42:49 | 只看該作者
28#
發(fā)表于 2025-3-26 08:43:48 | 只看該作者
29#
發(fā)表于 2025-3-26 14:26:22 | 只看該作者
David A. Robinson,John McK. Woollardmultivalued mappings . and ., we introduce multivalued generalized .-.-contraction mappings. We establish the existence of the best proximity point for such types of mappings in complete metric space. Moreover, we define multivalued generalized .-.-contraction pair of mappings and obtain best proxim
30#
發(fā)表于 2025-3-26 19:51:49 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 13:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
井研县| 阳城县| 旅游| 师宗县| 大方县| 佛冈县| 碌曲县| 尼玛县| 新余市| 五华县| 区。| 南康市| 习水县| 嘉兴市| 澄城县| 宕昌县| 鲁山县| 和龙市| 镇远县| 淄博市| 隆昌县| 清远市| 尉氏县| 马边| 全椒县| 阿勒泰市| 滁州市| 成安县| 青冈县| 田东县| 太白县| 南涧| 永清县| 周口市| 谷城县| 万全县| 高邮市| 溧阳市| 吴江市| 太湖县| 富民县|