找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Functional Analysis and Fixed-Point Theory; An Interdisciplinary Bipan Hazarika,Santanu Acharjee,Dragan S. Djordjev Book 2024 T

[復(fù)制鏈接]
樓主: Clinical-Trial
21#
發(fā)表于 2025-3-25 04:29:09 | 只看該作者
https://doi.org/10.1007/978-94-011-2268-9 on Kohlenbach hyperbolic space (KHS) in this chapter. Furthermore, for two different forms of generalized non-expansive map (NM) on KHS, certain .-convergence and strong convergence theorems utilizing the altered iteration process are proved. Finally, we show how our outcomes can be applied to non-
22#
發(fā)表于 2025-3-25 08:46:54 | 只看該作者
23#
發(fā)表于 2025-3-25 15:18:03 | 只看該作者
Polyoxometalates and Coordination Polymers,logarithmic boundedness of sequences of real numbers are introduced and tried to investigate some relations between the .—strongly harmonically summability and .—statistical logarithmic convergence in this work. We also establish some connections between . and .. It is shown that if a sequence is bo
24#
發(fā)表于 2025-3-25 17:59:10 | 只看該作者
25#
發(fā)表于 2025-3-25 23:23:44 | 只看該作者
26#
發(fā)表于 2025-3-26 00:49:09 | 只看該作者
https://doi.org/10.1007/978-1-4613-2137-8h space then the adjoint operator . of . is defined as a bounded linear operator on the dual of . which is denoted by . and defined by . for all . and .. Let . and . generate a complex number . of the operator . defined on the domain .(.), which is denoted by .. Then . is called the resolvent operat
27#
發(fā)表于 2025-3-26 05:42:49 | 只看該作者
28#
發(fā)表于 2025-3-26 08:43:48 | 只看該作者
29#
發(fā)表于 2025-3-26 14:26:22 | 只看該作者
David A. Robinson,John McK. Woollardmultivalued mappings . and ., we introduce multivalued generalized .-.-contraction mappings. We establish the existence of the best proximity point for such types of mappings in complete metric space. Moreover, we define multivalued generalized .-.-contraction pair of mappings and obtain best proxim
30#
發(fā)表于 2025-3-26 19:51:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平谷区| 乐安县| 图木舒克市| 宁津县| 广平县| 南投县| 仙桃市| 瓮安县| 庆元县| 宁强县| 龙门县| 嘉荫县| 张家港市| 大姚县| 台中县| 朝阳区| 新田县| 柳林县| 巩留县| 通许县| 噶尔县| 西丰县| 绥芬河市| 伊金霍洛旗| 军事| 阿城市| 博湖县| 山西省| 双牌县| 台东市| 保康县| 甘谷县| 扎赉特旗| 张掖市| 罗江县| 杭锦后旗| 犍为县| 扎囊县| 尉犁县| 皋兰县| 沅江市|