找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Dynamical Systems and Control; Victor A. Sadovnichiy,Mikhail Z. Zgurovsky Book 2016 Springer International Publishing Switzerl

[復(fù)制鏈接]
樓主: fibrous-plaque
11#
發(fā)表于 2025-3-23 12:24:49 | 只看該作者
Shin Abe,Mohsin Ali,Toshiyuki Wakatsuki minimal polynomials of the residual fractions in the continued fraction expansion of the algebraic numbers. The recurrence formulas to find the minimum polynomials of the residual fractions using linear fractional transformations are given.
12#
發(fā)表于 2025-3-23 13:51:45 | 只看該作者
Palgrave Studies in Economic Historyich result in a system of random differential equations. We then analyze the long-term behavior of the random system, in particular the existence and geometric structure of the random attractor, by using the theory of random dynamical systems. Numerical simulations are provided to illustrate the theoretical result.
13#
發(fā)表于 2025-3-23 20:24:45 | 只看該作者
14#
發(fā)表于 2025-3-23 22:47:40 | 只看該作者
Studies in Systems, Decision and Controlhttp://image.papertrans.cn/a/image/147881.jpg
15#
發(fā)表于 2025-3-24 04:25:07 | 只看該作者
Advances in Dynamical Systems and Control978-3-319-40673-2Series ISSN 2198-4182 Series E-ISSN 2198-4190
16#
發(fā)表于 2025-3-24 08:47:01 | 只看該作者
https://doi.org/10.1007/978-3-031-21247-5lobal weak solutions of the general classes of nonautonomous evolution equations and inclusions that satisfy standard sign and polynomial growth conditions. The obtained results allow to reduce the problem of the complete qualitative investigation of various nonlinear systems into the “small” (compact) part of the natural phase space.
17#
發(fā)表于 2025-3-24 12:13:30 | 只看該作者
18#
發(fā)表于 2025-3-24 18:21:50 | 只看該作者
19#
發(fā)表于 2025-3-24 20:25:08 | 只看該作者
20#
發(fā)表于 2025-3-25 02:50:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 06:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万载县| 沁阳市| 姜堰市| 北京市| 奉化市| 东平县| 肥西县| 进贤县| 宁海县| 凉城县| 泾源县| 丹凤县| 平乡县| 墨玉县| 汨罗市| 宜兴市| 杂多县| 利津县| 游戏| 阳山县| 古田县| 谢通门县| 陆丰市| 丹东市| 林周县| 山西省| 江陵县| 青铜峡市| 固安县| 新乡县| 曲靖市| 达日县| 林周县| 乐业县| 南澳县| 美姑县| 凯里市| 邻水| 平顶山市| 锡林郭勒盟| 恩施市|