找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Difference Equations and Discrete Dynamical Systems; ICDEA, Osaka, Japan, Saber Elaydi,Yoshihiro Hamaya,Christian P?tzsche Conf

[復(fù)制鏈接]
樓主: 麻煩
11#
發(fā)表于 2025-3-23 13:16:26 | 只看該作者
Sandra I. Anjo,Cátia Santa,Bruno Manadasities. The novel idea is that the discrete time results are derived from our recent related continuous time results by using suitable delay differential inequalities with piecewise constant arguments. The sharpness of the results are illustrated by examples.
12#
發(fā)表于 2025-3-23 16:33:11 | 只看該作者
13#
發(fā)表于 2025-3-23 20:33:23 | 只看該作者
14#
發(fā)表于 2025-3-23 23:12:30 | 只看該作者
https://doi.org/10.1007/978-88-470-2205-8pe. We study oscillatory and nonoscillatory solutions of neutral difference systems and their asymptotic properties. We establish sufficient conditions for the system to have strongly monotone solutions or Kneser solutions and then sufficient conditions for the system to have property B.
15#
發(fā)表于 2025-3-24 02:33:52 | 只看該作者
https://doi.org/10.1007/978-88-470-2205-8y difference equations (DDEs). Set invariance in the original state-space, also referred to as .-invariance, leads to conservative definitions due to its delay independent property. This limitation makes the .-invariant sets only applicable to a limited class of systems. However, there exists a degr
16#
發(fā)表于 2025-3-24 07:47:47 | 只看該作者
17#
發(fā)表于 2025-3-24 13:09:17 | 只看該作者
18#
發(fā)表于 2025-3-24 18:50:43 | 只看該作者
19#
發(fā)表于 2025-3-24 20:58:03 | 只看該作者
20#
發(fā)表于 2025-3-25 02:14:27 | 只看該作者
Jonathan Roth,Shlomi Constantinin altruistic parent makes a non-negative income transfer to his or her child. The subgame perfect equilibrium derived in the model is analyzed using two evolutionary dynamics games (i.e., replicator dynamics and best response dynamics). As a result, the equilibria with ex-post transfers and pre-comm
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 21:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高邑县| 兴义市| 许昌市| 宜良县| 科技| 岚皋县| 镇平县| 恩施市| 玉环县| 东台市| 高平市| 遂昌县| 肇庆市| 永年县| 安顺市| 南皮县| 万州区| 苗栗市| 当雄县| 棋牌| 屏南县| 乌鲁木齐县| 嘉定区| 达孜县| 岳普湖县| 汝城县| 府谷县| 定州市| 阳谷县| 鹿邑县| 永兴县| 汉阴县| 绥棱县| 龙门县| 井研县| 商南县| 汝城县| 张家港市| 揭阳市| 宁陵县| 鄂托克旗|