找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Deep Learning; M. Arif Wani,Farooq Ahmad Bhat,Asif Iqbal Khan Book 2020 Springer Nature Singapore Pte Ltd. 2020 Deep Learning.

[復(fù)制鏈接]
查看: 43226|回復(fù): 43
樓主
發(fā)表于 2025-3-21 20:03:18 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Advances in Deep Learning
影響因子2023M. Arif Wani,Farooq Ahmad Bhat,Asif Iqbal Khan
視頻videohttp://file.papertrans.cn/148/147758/147758.mp4
發(fā)行地址Discusses a contemporary research area, i.e. deep learning.Elaborates on both basic and advanced concepts in deep learning.Illustrates several advanced concepts like classification, face recognition,
學(xué)科分類(lèi)Studies in Big Data
圖書(shū)封面Titlebook: Advances in Deep Learning;  M. Arif Wani,Farooq Ahmad Bhat,Asif Iqbal Khan Book 2020 Springer Nature Singapore Pte Ltd. 2020 Deep Learning.
影響因子.This book introduces readers to both basic and advanced concepts in deep network models. It covers state-of-the-art deep architectures that many researchers are currently using to overcome the limitations of the traditional artificial neural networks. Various deep architecture models and their components are discussed in detail, and subsequently illustrated by algorithms and selected applications. In addition, the book explains in detail the transfer learning approach for faster training of deep models; the approach is also demonstrated on large volumes of fingerprint and face image datasets. In closing, it discusses the unique set of problems and challenges associated with these models..
Pindex Book 2020
The information of publication is updating

書(shū)目名稱Advances in Deep Learning影響因子(影響力)




書(shū)目名稱Advances in Deep Learning影響因子(影響力)學(xué)科排名




書(shū)目名稱Advances in Deep Learning網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Advances in Deep Learning網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Advances in Deep Learning被引頻次




書(shū)目名稱Advances in Deep Learning被引頻次學(xué)科排名




書(shū)目名稱Advances in Deep Learning年度引用




書(shū)目名稱Advances in Deep Learning年度引用學(xué)科排名




書(shū)目名稱Advances in Deep Learning讀者反饋




書(shū)目名稱Advances in Deep Learning讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:13:55 | 只看該作者
Basics of Supervised Deep Learning,ed, and practice-focused chapters from leading international experts. It demonstrates how positive education offers an approach to understanding learning that blends academic study with life skills such as self-awareness, emotion regulation, healthy mindsets, mindfulness, and positive habits, ground
板凳
發(fā)表于 2025-3-22 02:34:09 | 只看該作者
地板
發(fā)表于 2025-3-22 06:20:38 | 只看該作者
Supervised Deep Learning in Fingerprint Recognition, Johnson.Explores the importance of personal relations in diThis handbook examines the personal relationships between American presidents and British prime ministers. It aims to determine how personal diplomacy shaped the Anglo-American relationship and whether individual leaders made the relationsh
5#
發(fā)表于 2025-3-22 11:52:01 | 只看該作者
Unsupervised Deep Learning in Character Recognition,derpinning alcohol use and misuse, discusses the interventions that can be designed around these theories, and offers key insight into future developments within the field..A range of international experts assess the unique factors that contribute to alcohol-related behaviour as differentiated from
6#
發(fā)表于 2025-3-22 13:40:36 | 只看該作者
7#
發(fā)表于 2025-3-22 18:47:47 | 只看該作者
2197-6503 al advanced concepts like classification, face recognition, .This book introduces readers to both basic and advanced concepts in deep network models. It covers state-of-the-art deep architectures that many researchers are currently using to overcome the limitations of the traditional artificial neur
8#
發(fā)表于 2025-3-22 22:43:34 | 只看該作者
Chromatin Structure in Senescent Cellsearning more and more feasible for various applications. Since the main focus of this chapter is on supervised deep learning, Convolutional Neural Network (CNN or ConvNets) that is one of the most commonly used supervised deep learning models is discussed in this chapter.
9#
發(fā)表于 2025-3-23 05:06:45 | 只看該作者
Gowrishankar Banumathy,Peter D. Adamsrs, is done by using a large set of labeled data. Some of the supervised CNN architectures proposed by researchers include LeNet-5, AlexNet, ZFNet, VGGNet, GoogleNet, ResNet, DenseNet, and CapsNet. These architectures are briefly discussed in this chapter.
10#
發(fā)表于 2025-3-23 08:51:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 00:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
红河县| 霍城县| 全州县| 五华县| 乐都县| 兰州市| 镇赉县| 察隅县| 平度市| 泰宁县| 宜川县| 大田县| 肥乡县| 大邑县| 昔阳县| 高青县| 会泽县| 慈溪市| 察隅县| 广宗县| 滨州市| 托克逊县| 南宁市| 长宁区| 合江县| 安顺市| 邢台县| 东乌珠穆沁旗| 石首市| 普格县| 永济市| 长兴县| 贵溪市| 修武县| 英德市| 邻水| 田林县| 清新县| 沂南县| 共和县| 象山县|