找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Deep Learning; M. Arif Wani,Farooq Ahmad Bhat,Asif Iqbal Khan Book 2020 Springer Nature Singapore Pte Ltd. 2020 Deep Learning.

[復(fù)制鏈接]
查看: 43226|回復(fù): 43
樓主
發(fā)表于 2025-3-21 20:03:18 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Advances in Deep Learning
影響因子2023M. Arif Wani,Farooq Ahmad Bhat,Asif Iqbal Khan
視頻videohttp://file.papertrans.cn/148/147758/147758.mp4
發(fā)行地址Discusses a contemporary research area, i.e. deep learning.Elaborates on both basic and advanced concepts in deep learning.Illustrates several advanced concepts like classification, face recognition,
學(xué)科分類(lèi)Studies in Big Data
圖書(shū)封面Titlebook: Advances in Deep Learning;  M. Arif Wani,Farooq Ahmad Bhat,Asif Iqbal Khan Book 2020 Springer Nature Singapore Pte Ltd. 2020 Deep Learning.
影響因子.This book introduces readers to both basic and advanced concepts in deep network models. It covers state-of-the-art deep architectures that many researchers are currently using to overcome the limitations of the traditional artificial neural networks. Various deep architecture models and their components are discussed in detail, and subsequently illustrated by algorithms and selected applications. In addition, the book explains in detail the transfer learning approach for faster training of deep models; the approach is also demonstrated on large volumes of fingerprint and face image datasets. In closing, it discusses the unique set of problems and challenges associated with these models..
Pindex Book 2020
The information of publication is updating

書(shū)目名稱Advances in Deep Learning影響因子(影響力)




書(shū)目名稱Advances in Deep Learning影響因子(影響力)學(xué)科排名




書(shū)目名稱Advances in Deep Learning網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Advances in Deep Learning網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Advances in Deep Learning被引頻次




書(shū)目名稱Advances in Deep Learning被引頻次學(xué)科排名




書(shū)目名稱Advances in Deep Learning年度引用




書(shū)目名稱Advances in Deep Learning年度引用學(xué)科排名




書(shū)目名稱Advances in Deep Learning讀者反饋




書(shū)目名稱Advances in Deep Learning讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:13:55 | 只看該作者
Basics of Supervised Deep Learning,ed, and practice-focused chapters from leading international experts. It demonstrates how positive education offers an approach to understanding learning that blends academic study with life skills such as self-awareness, emotion regulation, healthy mindsets, mindfulness, and positive habits, ground
板凳
發(fā)表于 2025-3-22 02:34:09 | 只看該作者
地板
發(fā)表于 2025-3-22 06:20:38 | 只看該作者
Supervised Deep Learning in Fingerprint Recognition, Johnson.Explores the importance of personal relations in diThis handbook examines the personal relationships between American presidents and British prime ministers. It aims to determine how personal diplomacy shaped the Anglo-American relationship and whether individual leaders made the relationsh
5#
發(fā)表于 2025-3-22 11:52:01 | 只看該作者
Unsupervised Deep Learning in Character Recognition,derpinning alcohol use and misuse, discusses the interventions that can be designed around these theories, and offers key insight into future developments within the field..A range of international experts assess the unique factors that contribute to alcohol-related behaviour as differentiated from
6#
發(fā)表于 2025-3-22 13:40:36 | 只看該作者
7#
發(fā)表于 2025-3-22 18:47:47 | 只看該作者
2197-6503 al advanced concepts like classification, face recognition, .This book introduces readers to both basic and advanced concepts in deep network models. It covers state-of-the-art deep architectures that many researchers are currently using to overcome the limitations of the traditional artificial neur
8#
發(fā)表于 2025-3-22 22:43:34 | 只看該作者
Chromatin Structure in Senescent Cellsearning more and more feasible for various applications. Since the main focus of this chapter is on supervised deep learning, Convolutional Neural Network (CNN or ConvNets) that is one of the most commonly used supervised deep learning models is discussed in this chapter.
9#
發(fā)表于 2025-3-23 05:06:45 | 只看該作者
Gowrishankar Banumathy,Peter D. Adamsrs, is done by using a large set of labeled data. Some of the supervised CNN architectures proposed by researchers include LeNet-5, AlexNet, ZFNet, VGGNet, GoogleNet, ResNet, DenseNet, and CapsNet. These architectures are briefly discussed in this chapter.
10#
發(fā)表于 2025-3-23 08:51:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 00:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿克苏市| 满城县| 青岛市| 东台市| 山东省| 治多县| 宜昌市| 左贡县| 泽州县| 澳门| 芮城县| 永城市| 舒城县| 筠连县| 福安市| 阿拉善盟| 库车县| 东兰县| 南开区| 祁东县| 额尔古纳市| 那曲县| 祁东县| 合作市| 沙洋县| 凤翔县| 嫩江县| 灌阳县| 凤山市| 苍南县| 竹溪县| 鹿邑县| 苍梧县| 桂林市| 吉木乃县| 大埔县| 罗平县| 开阳县| 广汉市| 黔西县| 宁海县|