找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Deep Generative Models for Medical Artificial Intelligence; Hazrat Ali,Mubashir Husain Rehmani,Zubair Shah Book 2023 The Edito

[復(fù)制鏈接]
查看: 49293|回復(fù): 41
樓主
發(fā)表于 2025-3-21 20:05:19 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Advances in Deep Generative Models for Medical Artificial Intelligence
影響因子2023Hazrat Ali,Mubashir Husain Rehmani,Zubair Shah
視頻videohttp://file.papertrans.cn/148/147757/147757.mp4
發(fā)行地址Presents recent advancements and new AI methods for healthcare data based on deep generative models.Provides domain adaptation and data augmentation techniques for medical imaging and healthcare data.
學(xué)科分類Studies in Computational Intelligence
圖書封面Titlebook: Advances in Deep Generative Models for Medical Artificial Intelligence;  Hazrat Ali,Mubashir Husain Rehmani,Zubair Shah Book 2023 The Edito
影響因子.Generative Artificial Intelligence is rapidly advancing with many state-of-the-art performances on computer vision, speech processing, and natural language processing tasks. Generative adversarial networks and neural diffusion models can generate high-quality synthetic images of human faces, artworks, and coherent essays on different topics. Generative models are also transforming Medical Artificial Intelligence, given their potential to learn complex features from medical imaging and healthcare data. Hence, computer-aided diagnosis and healthcare are benefiting from Medical Artificial Intelligence and Generative Artificial Intelligence. .This book presents the recent advances in generative models for Medical Artificial Intelligence. It covers many applications of generative models for medical image data, including volumetric medical image segmentation, data augmentation, MRI reconstruction, and modeling of spatiotemporal medical data. This book highlights the recent advancements in Generative Artificial Intelligence for medical and healthcare applications, using medical imaging and clinical and electronic health records data. Furthermore, the book comprehensively presents the con
Pindex Book 2023
The information of publication is updating

書目名稱Advances in Deep Generative Models for Medical Artificial Intelligence影響因子(影響力)




書目名稱Advances in Deep Generative Models for Medical Artificial Intelligence影響因子(影響力)學(xué)科排名




書目名稱Advances in Deep Generative Models for Medical Artificial Intelligence網(wǎng)絡(luò)公開度




書目名稱Advances in Deep Generative Models for Medical Artificial Intelligence網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Advances in Deep Generative Models for Medical Artificial Intelligence被引頻次




書目名稱Advances in Deep Generative Models for Medical Artificial Intelligence被引頻次學(xué)科排名




書目名稱Advances in Deep Generative Models for Medical Artificial Intelligence年度引用




書目名稱Advances in Deep Generative Models for Medical Artificial Intelligence年度引用學(xué)科排名




書目名稱Advances in Deep Generative Models for Medical Artificial Intelligence讀者反饋




書目名稱Advances in Deep Generative Models for Medical Artificial Intelligence讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:43:04 | 只看該作者
https://doi.org/10.1007/978-3-319-22819-8d architectures have been developed and put into use to fully take advantage of the contextual information in the spatial dimension of 3D biomedical images. Because of the advancements in deep generative models, various GAN-based models have been designed and implemented by the research community to
板凳
發(fā)表于 2025-3-22 01:06:14 | 只看該作者
地板
發(fā)表于 2025-3-22 06:14:17 | 只看該作者
5#
發(fā)表于 2025-3-22 11:36:27 | 只看該作者
6#
發(fā)表于 2025-3-22 15:54:28 | 只看該作者
https://doi.org/10.1007/978-3-319-22819-8 to incorporate information about functional dynamics into prediction, which could be vital in many medical applications. Current medical applications of spatiotemporal DL have demonstrated the potential of these models, and recent advancements make this space poised to produce state-of-the-art mode
7#
發(fā)表于 2025-3-22 19:35:39 | 只看該作者
8#
發(fā)表于 2025-3-22 21:49:55 | 只看該作者
https://doi.org/10.1007/978-3-319-22819-8n the second step, Geodesic Active Contour (GAC), Chan and Vese (C-V), Selective Binary and Gaussian Filtering Regularized Level Set (SBGFRLS), Online Region Active Contour (ORACM) methods were used to segment the ROI regions from the images. The best results in the first two steps were obtained wit
9#
發(fā)表于 2025-3-23 02:43:54 | 只看該作者
https://doi.org/10.1007/978-3-319-22819-8r vision, plays an important role for several applications. While different methods exist to detect objects that appear in an image, a detailed analysis regarding common object detection is still lacking. This chapter pertains to detect objects that appear in an image with complex backgrounds using
10#
發(fā)表于 2025-3-23 09:37:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 20:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沅江市| 东乌珠穆沁旗| 嘉黎县| 双牌县| 内乡县| 曲麻莱县| 九寨沟县| 宁陵县| 嘉义县| 泾源县| 德格县| 柘荣县| 株洲县| 灌云县| 安新县| 寻甸| 安陆市| 乾安县| 云林县| 丰城市| 介休市| 拉孜县| 施甸县| 上栗县| 台南县| 滁州市| 墨竹工卡县| 烟台市| 岳普湖县| 榕江县| 武宁县| 抚州市| 泽库县| 永胜县| 娄烦县| 开平市| 大埔区| 商都县| 于都县| 双桥区| 城步|