找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Data-Driven Computing and Intelligent Systems; Selected Papers from Swagatam Das,Snehanshu Saha,Jagdish C. Bansal Conference pr

[復(fù)制鏈接]
查看: 18387|回復(fù): 62
樓主
發(fā)表于 2025-3-21 18:35:16 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Advances in Data-Driven Computing and Intelligent Systems
期刊簡稱Selected Papers from
影響因子2023Swagatam Das,Snehanshu Saha,Jagdish C. Bansal
視頻videohttp://file.papertrans.cn/148/147695/147695.mp4
發(fā)行地址Presents research papers on data-driven computing and intelligent systems.Results of ADCIS 2023 held at BITS Pilani, K K Birla Goa Campus, Goa, India.Serves as a reference for researchers and practiti
學(xué)科分類Lecture Notes in Networks and Systems
圖書封面Titlebook: Advances in Data-Driven Computing and Intelligent Systems; Selected Papers from Swagatam Das,Snehanshu Saha,Jagdish C. Bansal Conference pr
影響因子This book is a collection of best-selected research papers presented at the International Conference on Advances in Data-driven Computing and Intelligent Systems (ADCIS 2023) held at BITS Pilani, K K Birla Goa Campus, Goa, India, during September 21–23, 2023. It includes state-of-the-art research work in the cutting-edge technologies in the field of data science and intelligent systems. The book presents data-driven computing; it is a new field of computational analysis which uses provided data to directly produce predictive outcomes. The book is useful for academicians, research scholars, and industry persons.
Pindex Conference proceedings 2024
The information of publication is updating

書目名稱Advances in Data-Driven Computing and Intelligent Systems影響因子(影響力)




書目名稱Advances in Data-Driven Computing and Intelligent Systems影響因子(影響力)學(xué)科排名




書目名稱Advances in Data-Driven Computing and Intelligent Systems網(wǎng)絡(luò)公開度




書目名稱Advances in Data-Driven Computing and Intelligent Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Advances in Data-Driven Computing and Intelligent Systems被引頻次




書目名稱Advances in Data-Driven Computing and Intelligent Systems被引頻次學(xué)科排名




書目名稱Advances in Data-Driven Computing and Intelligent Systems年度引用




書目名稱Advances in Data-Driven Computing and Intelligent Systems年度引用學(xué)科排名




書目名稱Advances in Data-Driven Computing and Intelligent Systems讀者反饋




書目名稱Advances in Data-Driven Computing and Intelligent Systems讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:59:07 | 只看該作者
Lecture Notes in Networks and Systemshttp://image.papertrans.cn/a/image/147695.jpg
板凳
發(fā)表于 2025-3-22 03:55:06 | 只看該作者
地板
發(fā)表于 2025-3-22 05:26:45 | 只看該作者
https://doi.org/10.1007/978-3-211-72138-4arious existing solutions in the domain of interest. Such solutions increase safety and comfort of the patients, enhance quality of their treatment in hospitals, reduce the costs and the influence of human errors. However, the existing solutions are aimed at solving particular tasks. The use of diff
5#
發(fā)表于 2025-3-22 10:21:29 | 只看該作者
The middle cranial base and cavernous sinus to develop a POS tagger for the Assamese language. Due to the scarcity of digital linguistic resources, Assamese lacks high-performing POS taggers. To fill this gap, long short-term memory (LSTM) and bidirectional long short-term memory (Bi-LSTM) are explored in the proposed research to develop a P
6#
發(fā)表于 2025-3-22 15:34:31 | 只看該作者
7#
發(fā)表于 2025-3-22 20:35:06 | 只看該作者
The middle cranial base and cavernous sinusers, industry stakeholders and software developers globally. Inconsistent evidence for gameplay learning effects compared with traditional learning delivery tends to bear the “l(fā)earning gaming puzzle” continuing. Sparse findings grapple with open innovation-related aspects and a less clear impact is
8#
發(fā)表于 2025-3-22 21:54:15 | 只看該作者
9#
發(fā)表于 2025-3-23 01:22:27 | 只看該作者
Cave and Karst Systems of the Worlditerature some of the existing approaches such as statistical-based, density-based are applied for pattern detection whereas traditional approaches may not suitable for all scenarios, since they are limited with their properties. In this study, we propose deep learning-based behavior recognition to
10#
發(fā)表于 2025-3-23 07:50:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
康平县| 嘉鱼县| 嘉兴市| 栾城县| 卓尼县| 汤阴县| 水城县| 沿河| 民县| 武宁县| 平乐县| 武冈市| 横峰县| 湛江市| 罗田县| 宁安市| 高邮市| 晋城| 景东| 青神县| 上栗县| 类乌齐县| 莎车县| 鄢陵县| 于田县| 永丰县| 刚察县| 德惠市| 金阳县| 调兵山市| 息烽县| 雷波县| 贞丰县| 南岸区| 万安县| 偃师市| 通海县| 开远市| 固始县| 寻甸| 吴忠市|