找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Cryptology - ASIACRYPT ‘96; International Confer Kwangjo Kim,Tsutomu Matsumoto Conference proceedings 1996 Springer-Verlag Berl

[復(fù)制鏈接]
樓主: 召集會議
11#
發(fā)表于 2025-3-23 12:17:36 | 只看該作者
12#
發(fā)表于 2025-3-23 15:55:30 | 只看該作者
Cryptographic protocols based on real-quadratic A-fields (extended abstract),978-94-009-6251-4
13#
發(fā)表于 2025-3-23 21:47:04 | 只看該作者
Hash functions based on block ciphers and quaternary codes,978-0-230-61170-2
14#
發(fā)表于 2025-3-24 00:04:56 | 只看該作者
15#
發(fā)表于 2025-3-24 03:35:34 | 只看該作者
Some remarks on a receipt-free and universally verifiable Mix-type voting scheme,978-981-13-1138-3
16#
發(fā)表于 2025-3-24 07:01:16 | 只看該作者
Electronic money and key management from global and regional points of view,978-0-230-28153-0
17#
發(fā)表于 2025-3-24 14:36:59 | 只看該作者
Limiting the visible space visual secret sharing schemes and their application to human identificat978-0-333-97798-9
18#
發(fā)表于 2025-3-24 18:31:25 | 只看該作者
19#
發(fā)表于 2025-3-24 22:43:00 | 只看該作者
https://doi.org/10.1007/978-3-319-89731-8mes. The reason why the Bleichenbacher-attack([1]) works for ElGamal but not for DSA can be also explained well by the conception. We show that an elliptic curve gives the message recovery signature equivalent to DSA. Furthermore we investigate the new attack over elliptic curves and present its new
20#
發(fā)表于 2025-3-25 02:15:16 | 只看該作者
How to Select a Career in Oral Healthatic A-fields as another computationally difficult problem. In real-quadratic number fields this again is at least as difficult as the integer factorization problem. In congruence function fields the problem of computing square roots is supposed to be even more difficult than in number fields. We pr
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 22:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绥滨县| 永安市| 东宁县| 连州市| 固阳县| 宁乡县| 威远县| 工布江达县| 汨罗市| 宜良县| 贵定县| 天峨县| 阳新县| 安泽县| 临安市| 青海省| 揭西县| 永嘉县| 融水| 静宁县| 增城市| 西乌珠穆沁旗| 周口市| 黑山县| 石屏县| 庐江县| 黔南| 舞阳县| 石泉县| 安化县| 昌都县| 保山市| 东丽区| 招远市| 武功县| 江都市| 马公市| 怀仁县| 偃师市| 武隆县| 四子王旗|