找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Cryptology - ASIACRYPT ‘96; International Confer Kwangjo Kim,Tsutomu Matsumoto Conference proceedings 1996 Springer-Verlag Berl

[復(fù)制鏈接]
樓主: 召集會議
11#
發(fā)表于 2025-3-23 12:17:36 | 只看該作者
12#
發(fā)表于 2025-3-23 15:55:30 | 只看該作者
Cryptographic protocols based on real-quadratic A-fields (extended abstract),978-94-009-6251-4
13#
發(fā)表于 2025-3-23 21:47:04 | 只看該作者
Hash functions based on block ciphers and quaternary codes,978-0-230-61170-2
14#
發(fā)表于 2025-3-24 00:04:56 | 只看該作者
15#
發(fā)表于 2025-3-24 03:35:34 | 只看該作者
Some remarks on a receipt-free and universally verifiable Mix-type voting scheme,978-981-13-1138-3
16#
發(fā)表于 2025-3-24 07:01:16 | 只看該作者
Electronic money and key management from global and regional points of view,978-0-230-28153-0
17#
發(fā)表于 2025-3-24 14:36:59 | 只看該作者
Limiting the visible space visual secret sharing schemes and their application to human identificat978-0-333-97798-9
18#
發(fā)表于 2025-3-24 18:31:25 | 只看該作者
19#
發(fā)表于 2025-3-24 22:43:00 | 只看該作者
https://doi.org/10.1007/978-3-319-89731-8mes. The reason why the Bleichenbacher-attack([1]) works for ElGamal but not for DSA can be also explained well by the conception. We show that an elliptic curve gives the message recovery signature equivalent to DSA. Furthermore we investigate the new attack over elliptic curves and present its new
20#
發(fā)表于 2025-3-25 02:15:16 | 只看該作者
How to Select a Career in Oral Healthatic A-fields as another computationally difficult problem. In real-quadratic number fields this again is at least as difficult as the integer factorization problem. In congruence function fields the problem of computing square roots is supposed to be even more difficult than in number fields. We pr
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 22:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昭觉县| 海安县| 山东| 酉阳| 且末县| 湄潭县| 桂平市| 安宁市| 庆阳市| 闻喜县| 铁岭县| 施甸县| 赣榆县| 蓬莱市| 眉山市| 芦溪县| 新龙县| 宁明县| 鄂托克前旗| 通山县| 梧州市| 巴彦淖尔市| 清涧县| 西丰县| 瓦房店市| 高淳县| 岑溪市| 西和县| 彰化县| 黔东| 福海县| 尼勒克县| 莱州市| 永定县| 南开区| 永康市| 霸州市| 石阡县| 临武县| 陇西县| 衡阳市|