找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Cryptology – EUROCRYPT 2016; 35th Annual Internat Marc Fischlin,Jean-Sébastien Coron Conference proceedings 2016 International

[復(fù)制鏈接]
樓主: interleukins
41#
發(fā)表于 2025-3-28 17:23:47 | 只看該作者
Massimo Fioranelli,Gaetano Frajeseof the HIBE adversary who is allowed to obtain keys for different identities . she selects the attacked identity. Our main technical contribution is to develop compression/reconstruction techniques that can be achieved relative to such adaptive attackers.
42#
發(fā)表于 2025-3-28 22:36:47 | 只看該作者
43#
發(fā)表于 2025-3-28 23:54:57 | 只看該作者
https://doi.org/10.1007/978-90-313-9028-1 is only 3 group elements, and verification consists of checking a single pairing product equations using 3 pairings in?total. Our SNARK is zero-knowledge and does not reveal anything about the witness the prover uses to make the proof..As our second contribution we answer an open question of Bitans
44#
發(fā)表于 2025-3-29 04:26:40 | 只看該作者
45#
發(fā)表于 2025-3-29 07:15:03 | 只看該作者
H.G.L.M. Grundmeijer,F.W.A. Verheugtd holds for adversaries that can store many natural functions of the labels (e.g., linear combinations), but still not arbitrary functions thereof..We then introduce and study a combinatorial quantity, and show how a sufficiently small upper bound on it (which we conjecture) extends our CMC bound fo
46#
發(fā)表于 2025-3-29 11:28:30 | 只看該作者
47#
發(fā)表于 2025-3-29 16:59:13 | 只看該作者
5 Diabetes mellitus en het metabool syndroomonger upper bound for the XOR function. In particular, we find that the conservative message complexity of 1-very difficult functions in . is 2., while the conservative message complexity for XOR (and .) is .. Next, we consider round complexity. It is a long-standing open problem to determine whethe
48#
發(fā)表于 2025-3-29 23:44:55 | 只看該作者
49#
發(fā)表于 2025-3-30 02:01:39 | 只看該作者
50#
發(fā)表于 2025-3-30 06:00:34 | 只看該作者
On the Impossibility of Tight Cryptographic Reductions,978-0-230-51280-1
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 20:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汤原县| 台安县| 武强县| 汤阴县| 屏东市| 张家界市| 镇沅| 始兴县| 农安县| 赫章县| 上思县| 江阴市| 资源县| 清河县| 郴州市| 措美县| 嵊州市| 金塔县| 鄂伦春自治旗| 高雄市| 获嘉县| 沂源县| 临汾市| 泰宁县| 九寨沟县| 如皋市| 阳西县| 洛南县| 兴化市| 乐陵市| 茶陵县| 成都市| 贵定县| 洪洞县| 永宁县| 咸阳市| 思南县| 改则县| 酒泉市| 竹溪县| 新干县|