找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Cryptology – EUROCRYPT 2005; 24th Annual Internat Ronald Cramer Conference proceedings 2005 Springer-Verlag Berlin Heidelberg 2

[復制鏈接]
樓主: Aggrief
11#
發(fā)表于 2025-3-23 13:13:25 | 只看該作者
12#
發(fā)表于 2025-3-23 15:04:40 | 只看該作者
13#
發(fā)表于 2025-3-23 21:48:43 | 只看該作者
Charles C. Gornick,D. Woodrow Benson Jr.re schemes either employed a trusted-party aided join operation or a complex joining protocol requiring many interactions between the prospective user and the Group Manager (GM). In addition no efficient scheme employed a join protocol proven secure against adversaries that have the capability to dy
14#
發(fā)表于 2025-3-24 02:08:34 | 只看該作者
15#
發(fā)表于 2025-3-24 05:26:34 | 只看該作者
16#
發(fā)表于 2025-3-24 08:40:36 | 只看該作者
https://doi.org/10.1007/978-1-4684-7526-5pproach allows to maximize the bound on the solutions of .(.,.) in a purely combinatorial way. We give various construction rules for different shapes of .(.,.)’s Newton polygon. Our method has several applications. Most interestingly, we reduce the case of solving univariate polynomials .(.) modulo
17#
發(fā)表于 2025-3-24 11:38:44 | 只看該作者
18#
發(fā)表于 2025-3-24 15:27:56 | 只看該作者
David E. Clapham,Robert L. DeHaanf the dimension of the coding and encoded Hilbert spaces. However, this bound only applies to codes which recover the message exactly. Naively, one might expect that correcting errors to very high fidelity would only allow small violations of this bound. This intuition is incorrect: in this paper we
19#
發(fā)表于 2025-3-24 22:21:07 | 只看該作者
20#
發(fā)表于 2025-3-25 01:24:03 | 只看該作者
David E. Clapham,Robert L. DeHaan < ./3 of them being corrupted, and security parameter ., a circuit with . gates can be securely computed with communication complexity . bits. In contrast to all previous asynchronous protocols with optimal resilience, our protocol requires access to an expensive broadcast primitive only . times —
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 06:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
新化县| 峨眉山市| 清丰县| 白玉县| 麻江县| 洞口县| 图片| 大庆市| 息烽县| 永泰县| 九台市| 辽阳县| 宽甸| 扎赉特旗| 五华县| 乌拉特中旗| 夏津县| 化德县| 乌什县| 咸丰县| 花莲县| 淮滨县| 延川县| 通榆县| 囊谦县| 六安市| 仁化县| 台北市| 武义县| 东兰县| 深泽县| 五原县| 石台县| 封丘县| 千阳县| 澎湖县| 齐齐哈尔市| 晋中市| 丹东市| 福清市| 宝应县|