找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Cryptology – EUROCRYPT 2005; 24th Annual Internat Ronald Cramer Conference proceedings 2005 Springer-Verlag Berlin Heidelberg 2

[復制鏈接]
樓主: Aggrief
11#
發(fā)表于 2025-3-23 13:13:25 | 只看該作者
12#
發(fā)表于 2025-3-23 15:04:40 | 只看該作者
13#
發(fā)表于 2025-3-23 21:48:43 | 只看該作者
Charles C. Gornick,D. Woodrow Benson Jr.re schemes either employed a trusted-party aided join operation or a complex joining protocol requiring many interactions between the prospective user and the Group Manager (GM). In addition no efficient scheme employed a join protocol proven secure against adversaries that have the capability to dy
14#
發(fā)表于 2025-3-24 02:08:34 | 只看該作者
15#
發(fā)表于 2025-3-24 05:26:34 | 只看該作者
16#
發(fā)表于 2025-3-24 08:40:36 | 只看該作者
https://doi.org/10.1007/978-1-4684-7526-5pproach allows to maximize the bound on the solutions of .(.,.) in a purely combinatorial way. We give various construction rules for different shapes of .(.,.)’s Newton polygon. Our method has several applications. Most interestingly, we reduce the case of solving univariate polynomials .(.) modulo
17#
發(fā)表于 2025-3-24 11:38:44 | 只看該作者
18#
發(fā)表于 2025-3-24 15:27:56 | 只看該作者
David E. Clapham,Robert L. DeHaanf the dimension of the coding and encoded Hilbert spaces. However, this bound only applies to codes which recover the message exactly. Naively, one might expect that correcting errors to very high fidelity would only allow small violations of this bound. This intuition is incorrect: in this paper we
19#
發(fā)表于 2025-3-24 22:21:07 | 只看該作者
20#
發(fā)表于 2025-3-25 01:24:03 | 只看該作者
David E. Clapham,Robert L. DeHaan < ./3 of them being corrupted, and security parameter ., a circuit with . gates can be securely computed with communication complexity . bits. In contrast to all previous asynchronous protocols with optimal resilience, our protocol requires access to an expensive broadcast primitive only . times —
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 06:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
包头市| 兴山县| 太和县| 彝良县| 霸州市| 磐安县| 玉林市| 泸州市| 朔州市| 朝阳区| 玉树县| 稷山县| 牟定县| 蓬安县| 鹤山市| 安泽县| 简阳市| 交口县| 汕头市| 普陀区| 长白| 南召县| 阳高县| 吴堡县| 武平县| 湄潭县| 沅江市| 南和县| 海阳市| 错那县| 玉山县| 峨眉山市| 台南市| 平塘县| 绥中县| 临湘市| 邹平县| 诸城市| 杨浦区| 融水| 河北省|