找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Cryptology – ASIACRYPT 2020; 26th International C Shiho Moriai,Huaxiong Wang Conference proceedings 2020 International Associat

[復制鏈接]
樓主: HBA1C
21#
發(fā)表于 2025-3-25 06:09:51 | 只看該作者
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/a/image/147494.jpg
22#
發(fā)表于 2025-3-25 08:24:26 | 只看該作者
Albena Azmanova,James Chamberlainat of Boneh et al. (which supports aggregating only once), have constant-size public parameters, commitments and openings. As an additional feature, for the first construction we propose efficient arguments of knowledge of subvector openings which immediately yields a keyless proof of storage with c
23#
發(fā)表于 2025-3-25 12:25:36 | 只看該作者
24#
發(fā)表于 2025-3-25 18:42:44 | 只看該作者
25#
發(fā)表于 2025-3-25 22:43:53 | 只看該作者
https://doi.org/10.1007/978-3-319-64888-0rity parameter, even in the multi-challenge setting, where an adversary can ask for multiple challenge ciphertexts. We prove the adaptive security of our scheme based on the Matrix Decisional Diffie-Hellman assumption in prime-order pairing groups, which generalizes a family of standard Diffie-Hellm
26#
發(fā)表于 2025-3-26 02:29:22 | 只看該作者
27#
發(fā)表于 2025-3-26 06:09:57 | 只看該作者
The American Empire in the Pacific,to existing solutions, the constructions we propose have some interesting properties: (1) the size of the ciphertext is linear to the size of plaintext and independent of the sizes and the number of the analysis patterns; (2) the sizes of the issued trapdoors are constant on the size of the data to
28#
發(fā)表于 2025-3-26 08:49:44 | 只看該作者
The American Empire in the Pacific,gree polynomial . by identifying the . to make a composite polynomial . get close to the sign function (equivalent to the comparison function) as the number of compositions increases. We additionally introduce an acceleration method applying a mixed polynomial composition . for some other polynomial
29#
發(fā)表于 2025-3-26 15:25:48 | 只看該作者
30#
發(fā)表于 2025-3-26 18:11:29 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 20:23
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
平安县| 黄大仙区| 阜新市| 黄骅市| 花垣县| 闽侯县| 清远市| 定结县| 五莲县| 乐山市| 开阳县| 乃东县| 望都县| 香河县| 五峰| 平山县| 达拉特旗| 晋江市| 永安市| 峨山| 盈江县| 醴陵市| 双峰县| 葫芦岛市| 富阳市| 安多县| 平塘县| 如皋市| 包头市| 个旧市| 西峡县| 苏尼特左旗| 北流市| 闻喜县| 清流县| 开封县| 江津市| 油尖旺区| 灯塔市| 乌审旗| 锡林郭勒盟|