找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Cryptology – ASIACRYPT 2017; 23rd International C Tsuyoshi Takagi,Thomas Peyrin Conference proceedings 2017 International Assoc

[復制鏈接]
查看: 54478|回復: 55
樓主
發(fā)表于 2025-3-21 19:17:08 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Advances in Cryptology – ASIACRYPT 2017
期刊簡稱23rd International C
影響因子2023Tsuyoshi Takagi,Thomas Peyrin
視頻videohttp://file.papertrans.cn/148/147485/147485.mp4
發(fā)行地址Includes supplementary material:
學科分類Lecture Notes in Computer Science
圖書封面Titlebook: Advances in Cryptology – ASIACRYPT 2017; 23rd International C Tsuyoshi Takagi,Thomas Peyrin Conference proceedings 2017 International Assoc
影響因子The three-volume set LNCS 10624, 10625, 10626 constitutes the refereed?proceedings of the 23rd International Conference on the Theory and?Applications of Cryptology and Information Security, ASIACRYPT 2017,?held in Hong Kong, China, in December 2017..The 65 revised full papers? were carefully selected from 243 submissions. They are organized in topical sections on?Post-Quantum Cryptography; Symmetric Key Cryptanalysis; Lattices; Homomorphic Encryptions; Access Control;?Oblivious Protocols; Side Channel Analysis;?Pairing-based Protocols; Quantum Algorithms; Elliptic Curves; Block Chains; Multi-Party Protocols; Operating Modes Security Proofs;?Cryptographic Protocols; Foundations; Zero-Knowledge Proofs; and Symmetric Key Designs..
Pindex Conference proceedings 2017
The information of publication is updating

書目名稱Advances in Cryptology – ASIACRYPT 2017影響因子(影響力)




書目名稱Advances in Cryptology – ASIACRYPT 2017影響因子(影響力)學科排名




書目名稱Advances in Cryptology – ASIACRYPT 2017網(wǎng)絡公開度




書目名稱Advances in Cryptology – ASIACRYPT 2017網(wǎng)絡公開度學科排名




書目名稱Advances in Cryptology – ASIACRYPT 2017被引頻次




書目名稱Advances in Cryptology – ASIACRYPT 2017被引頻次學科排名




書目名稱Advances in Cryptology – ASIACRYPT 2017年度引用




書目名稱Advances in Cryptology – ASIACRYPT 2017年度引用學科排名




書目名稱Advances in Cryptology – ASIACRYPT 2017讀者反饋




書目名稱Advances in Cryptology – ASIACRYPT 2017讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-22 00:02:20 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:32:37 | 只看該作者
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/a/image/147485.jpg
地板
發(fā)表于 2025-3-22 08:33:32 | 只看該作者
https://doi.org/10.1007/978-3-319-70694-8Data security; Cryptography; Authentication; Public key cryptography; Encryption; Software engineering; Se
5#
發(fā)表于 2025-3-22 11:55:24 | 只看該作者
978-3-319-70693-1International Association for Cryptologic Research 2017
6#
發(fā)表于 2025-3-22 13:52:18 | 只看該作者
Capital Structure and Corporate Governancee endomorphism ring computation problem, arguably the hardest of all problems in this area, whereas the only previous scheme based on isogenies (due to De Feo, Jao and Pl?t) relied on potentially easier problems. The protocol makes novel use of an algorithm of Kohel-Lauter-Petit-Tignol for the quate
7#
發(fā)表于 2025-3-22 18:58:41 | 只看該作者
8#
發(fā)表于 2025-3-22 23:45:45 | 只看該作者
Capital Structure in the Modern Worldgnatures from sigma-protocols. In classical cryptography, Fiat-Shamir is a zero-knowledge proof of knowledge assuming that the underlying sigma-protocol has the zero-knowledge and special soundness properties. Unfortunately, Ambainis, Rosmanis, and Unruh (FOCS 2014) ruled out non-relativizing proofs
9#
發(fā)表于 2025-3-23 01:36:20 | 只看該作者
Luigi L. Pasinetti,Roberto Scazzieri the diffusion of a conditional cube variable is reduced. Then, using a greedy algorithm (Algorithm 4 in Huang ..’s paper), Huang .. find some ordinary cube variables, that do not multiply together in the 1. round and do not multiply with the conditional cube variable in the 2. round. Then the key-r
10#
發(fā)表于 2025-3-23 06:52:20 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 02:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
信宜市| 根河市| 大同市| 东方市| 灵川县| 界首市| 铁岭市| 徐汇区| 皮山县| 柞水县| 武功县| 英德市| 嵊泗县| 印江| 尉氏县| 左云县| 化州市| 靖州| 临江市| 莎车县| 怀远县| 凤冈县| 赣榆县| 邛崃市| 左云县| 汝州市| 奉节县| 河西区| 平顶山市| 区。| 孟村| 清苑县| 屏南县| 忻城县| 融水| 大城县| 安远县| 青神县| 北川| 塘沽区| 齐齐哈尔市|