找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Computational Intelligence; 17th International W Ignacio Rojas,Gonzalo Joya,Andreu Catala Conference proceedings 2023 The Edito

[復(fù)制鏈接]
查看: 42517|回復(fù): 58
樓主
發(fā)表于 2025-3-21 16:48:44 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Advances in Computational Intelligence
期刊簡稱17th International W
影響因子2023Ignacio Rojas,Gonzalo Joya,Andreu Catala
視頻videohttp://file.papertrans.cn/148/147135/147135.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Advances in Computational Intelligence; 17th International W Ignacio Rojas,Gonzalo Joya,Andreu Catala Conference proceedings 2023 The Edito
影響因子.This two-volume set LNCS 14134 and LNCS 14135 constitutes the refereed proceedings of the 17th International Work-Conference on Artificial Neural Networks, IWANN 2023, held in Ponta Delgada, Portugal, during June 19–21, 2023...The 108 full papers presented in this two-volume set were carefully reviewed and selected from 149 submissions...The papers in Part I are organized in topical sections on advanced topics in computational intelligence; advances in artificial neural networks; ANN HW-accelerators; applications of machine learning in biomedicine and healthcare; and applications of machine learning in time series analysis..The papers in Part II are organized in topical sections on deep learning and applications; deep learning applied to computer vision and robotics; general applications of artificial intelligence; interaction with neural systems in both health and disease; machine learning for 4.0 industry solutions; neural networks in chemistry and material characterization; ordinal classification; real world applications of BCI systems; and spiking neural networks: applications and algorithms. .
Pindex Conference proceedings 2023
The information of publication is updating

書目名稱Advances in Computational Intelligence影響因子(影響力)




書目名稱Advances in Computational Intelligence影響因子(影響力)學(xué)科排名




書目名稱Advances in Computational Intelligence網(wǎng)絡(luò)公開度




書目名稱Advances in Computational Intelligence網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Advances in Computational Intelligence被引頻次




書目名稱Advances in Computational Intelligence被引頻次學(xué)科排名




書目名稱Advances in Computational Intelligence年度引用




書目名稱Advances in Computational Intelligence年度引用學(xué)科排名




書目名稱Advances in Computational Intelligence讀者反饋




書目名稱Advances in Computational Intelligence讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:46:05 | 只看該作者
https://doi.org/10.1007/978-3-319-69203-6e animals are located within them. NOSpcimen (NOn-SuPervised disCardIng of eMpty images based on autoENcoders) system takes a different approach. It relies on unsupervised learning mechanisms. Thus, no prior annotation work is required to automate the process of discarding empty images.
板凳
發(fā)表于 2025-3-22 04:27:45 | 只看該作者
https://doi.org/10.1007/978-3-319-69203-6s. Our proposed framework uses all advantages of transformers. Extensive evaluation on two benchmark datasets showed that the introduced model outperform existed approaches on the SumMe dataset by 3% and shows comparable results on the TVSum dataset.
地板
發(fā)表于 2025-3-22 05:04:22 | 只看該作者
Thomas Arentzen,Virginia Burrus,Glenn Peersect ratio (MAR), respectively. Breath characteristics were also measured. A customized residual neural network was chosen as the final prediction model for the entire system. The results achieved by the proposed model validate the chosen approach to fatigue detection by achieving an average accuracy of 75% on test data.
5#
發(fā)表于 2025-3-22 10:55:04 | 只看該作者
6#
發(fā)表于 2025-3-22 13:10:07 | 只看該作者
An Examination of the Textile Evidence,rpretability. The proposed method uses a multidimensional layer to remove irrelevant features along the temporal dimension. The resulting model is compared to several feature selection methods and experimental results demonstrate that the proposed approach can improve forecasting accuracy while reducing model complexity.
7#
發(fā)表于 2025-3-22 20:59:06 | 只看該作者
Thomas Arentzen,Virginia Burrus,Glenn Peerspen has been created. The research has proved that the DTW coupled with neural networks perform significantly better than the baseline method - DTW model based on constant thresholds. The results are presented and discussed in this paper.
8#
發(fā)表于 2025-3-22 22:03:10 | 只看該作者
9#
發(fā)表于 2025-3-23 04:04:23 | 只看該作者
10#
發(fā)表于 2025-3-23 08:56:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 00:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
扶绥县| 桑日县| 芜湖市| 安溪县| 芦溪县| 普兰县| 华安县| 舞钢市| 肇源县| 曲靖市| 龙山县| 井研县| 新丰县| 高淳县| 阜新市| 万全县| 视频| 泾源县| 武清区| 华宁县| 嵊泗县| 长海县| 河西区| 定州市| 石屏县| 谷城县| 翁牛特旗| 阜康市| 德阳市| 土默特左旗| 池州市| 华坪县| 新沂市| 来凤县| 航空| 德清县| 彭阳县| 霍城县| 碌曲县| 定兴县| 武功县|