找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Computational Collective Intelligence; 15th International C Ngoc Thanh Nguyen,János Botzheim,Adrianna Kozierki Conference proce

[復(fù)制鏈接]
查看: 12411|回復(fù): 53
樓主
發(fā)表于 2025-3-21 18:44:32 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Advances in Computational Collective Intelligence
期刊簡(jiǎn)稱15th International C
影響因子2023Ngoc Thanh Nguyen,János Botzheim,Adrianna Kozierki
視頻videohttp://file.papertrans.cn/148/147122/147122.mp4
學(xué)科分類Communications in Computer and Information Science
圖書封面Titlebook: Advances in Computational Collective Intelligence; 15th International C Ngoc Thanh Nguyen,János Botzheim,Adrianna Kozierki Conference proce
影響因子This book constitutes the refereed proceedings of the 15th International Conference?on?Advances in Computational Collective Intelligence,??ICCCI 2023, held in Budapest, Hungary,?during September 27–29, 2023..The?59?full papers included in this book were carefully reviewed and?selected from?218?submissions. They were organized in topical sections as follows:?Collective Intelligence and Collective Decision-Making,?Deep Learning Techniques,??Natural Language Processing,?Data Minning and Machine learning,?Social Networks and Speek Communication,?Cybersecurity and Internet of Things,?Cooperative Strategies for Decision Making and Optimization,?Digital Content Understanding and Apllication for Industry 4.0 and?Computational Intelligence in Medical Applications..
Pindex Conference proceedings 2023
The information of publication is updating

書目名稱Advances in Computational Collective Intelligence影響因子(影響力)




書目名稱Advances in Computational Collective Intelligence影響因子(影響力)學(xué)科排名




書目名稱Advances in Computational Collective Intelligence網(wǎng)絡(luò)公開度




書目名稱Advances in Computational Collective Intelligence網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Advances in Computational Collective Intelligence被引頻次




書目名稱Advances in Computational Collective Intelligence被引頻次學(xué)科排名




書目名稱Advances in Computational Collective Intelligence年度引用




書目名稱Advances in Computational Collective Intelligence年度引用學(xué)科排名




書目名稱Advances in Computational Collective Intelligence讀者反饋




書目名稱Advances in Computational Collective Intelligence讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:22:48 | 只看該作者
https://doi.org/10.1057/9780230250987e method incorporates transfer learning, where a pre-trained CNN model on a large dataset of chest X-ray images is fine-tuned for the specific task of detecting COVID-19. This approach can help to reduce the amount of labeled data required for the specific task and improve the overall performance of
板凳
發(fā)表于 2025-3-22 02:29:58 | 只看該作者
https://doi.org/10.1057/9780230250987successes of DL models in Arabic SA, there are still areas for improvement in terms of contextual information and implicit mining expressed in different real-world cases. In this paper, the authors introduce a deep Bi-LSTM network to ameliorate Tunisian SA during the spread of the Coronavirus Pandem
地板
發(fā)表于 2025-3-22 08:20:53 | 只看該作者
Dimos Chatzinikolaou,Charis Vladosxture of recurrent neural network (RNN) and convolutional neural network (CNN). Parkinson’s disease dataset was used in a resting state, which is consists of twenty PD and twenty normal subjects. The main objectives of CRNN use are that can extract automatically multiple characteristics from the inp
5#
發(fā)表于 2025-3-22 09:14:18 | 只看該作者
Laura Schengel,Véronique Goehlichd regularization. The classification performance of these two networks is analyzed with the help of confusion matrix and its parameters. Simulation results have shown that the VGG16 model gives 97.06% accuracy. It also observed that the proposed system gives more accurate results than any previous s
6#
發(fā)表于 2025-3-22 16:16:27 | 只看該作者
7#
發(fā)表于 2025-3-22 20:03:19 | 只看該作者
https://doi.org/10.1057/9780230307728 how novel methods of Machine Learning are able to perform analysis of texts in polish language related to the medical and pharmaceutical industries, and then extract key information on a given topic.
8#
發(fā)表于 2025-3-22 23:06:48 | 只看該作者
https://doi.org/10.1057/9780230307728er based model to disambiguate new words and evaluate the performance of the corpus. The experimental results show that the baseline approach achieves an accuracy of around 90%. The corpus is publically available upon request and is open for extension.
9#
發(fā)表于 2025-3-23 02:12:01 | 只看該作者
Previous Opinions is All You Need—Legal Information Retrieval System
10#
發(fā)表于 2025-3-23 07:03:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 22:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高台县| 额济纳旗| 汾西县| 东平县| 金山区| 嵊泗县| 原阳县| 赤壁市| 普洱| 水城县| 突泉县| 清徐县| 聂拉木县| 黎城县| 日喀则市| 沙雅县| 沙坪坝区| 全州县| 芦溪县| 大厂| 剑川县| 孟津县| 若羌县| 巴东县| 泾源县| 广饶县| 衢州市| 云龙县| 沁源县| 调兵山市| 比如县| 灵武市| 闽清县| 新蔡县| 达孜县| 巴塘县| 南涧| 金昌市| 疏附县| 张掖市| 东阳市|