找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Complex Data Modeling and Computational Methods in Statistics; Anna Maria Paganoni,Piercesare Secchi Book 2015 Springer Intern

[復(fù)制鏈接]
查看: 46611|回復(fù): 49
樓主
發(fā)表于 2025-3-21 17:13:58 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Advances in Complex Data Modeling and Computational Methods in Statistics
影響因子2023Anna Maria Paganoni,Piercesare Secchi
視頻videohttp://file.papertrans.cn/148/147109/147109.mp4
發(fā)行地址Offers numerous step-by-step tutorials to help the reader to learn quickly.A special chapter on next generation Flash prepares readers for the future.Includes suggestions on how to protect flash sites
學(xué)科分類Contributions to Statistics
圖書(shū)封面Titlebook: Advances in Complex Data Modeling and Computational Methods in Statistics;  Anna Maria Paganoni,Piercesare Secchi Book 2015 Springer Intern
影響因子The book is addressed to statisticians working at the forefront of the statistical analysis of complex and high dimensional data and offers a wide variety of statistical models, computer intensive methods and applications: network inference from the analysis of high dimensional data; new developments for bootstrapping complex data; regression analysis for measuring the downsize reputational risk; statistical methods for research on the human genome dynamics; inference in non-euclidean settings and for shape data; Bayesian methods for reliability and the analysis of complex data; methodological issues in using administrative data for clinical and epidemiological research; regression models with differential regularization; geostatistical methods for mobility analysis through mobile phone data exploration. This volume is the result of a careful selection among the contributions presented at the conference "S.Co.2013: Complex data modeling and computationally intensive methods for estimation and prediction" held at the Politecnico di Milano, 2013. All the papers published here have been rigorously peer-reviewed.
Pindex Book 2015
The information of publication is updating

書(shū)目名稱Advances in Complex Data Modeling and Computational Methods in Statistics影響因子(影響力)




書(shū)目名稱Advances in Complex Data Modeling and Computational Methods in Statistics影響因子(影響力)學(xué)科排名




書(shū)目名稱Advances in Complex Data Modeling and Computational Methods in Statistics網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Advances in Complex Data Modeling and Computational Methods in Statistics網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Advances in Complex Data Modeling and Computational Methods in Statistics被引頻次




書(shū)目名稱Advances in Complex Data Modeling and Computational Methods in Statistics被引頻次學(xué)科排名




書(shū)目名稱Advances in Complex Data Modeling and Computational Methods in Statistics年度引用




書(shū)目名稱Advances in Complex Data Modeling and Computational Methods in Statistics年度引用學(xué)科排名




書(shū)目名稱Advances in Complex Data Modeling and Computational Methods in Statistics讀者反饋




書(shū)目名稱Advances in Complex Data Modeling and Computational Methods in Statistics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:47:27 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:02:24 | 只看該作者
Building Multiple Regression Models,e graphical model. The first model is used to infer conditional independence graphs. The latter model is applied to compute the relative importance or contribution of each predictor to the response variables. Recently, penalized likelihood approaches have also been proposed to estimate graph structu
地板
發(fā)表于 2025-3-22 07:21:05 | 只看該作者
5#
發(fā)表于 2025-3-22 09:05:06 | 只看該作者
6#
發(fā)表于 2025-3-22 15:41:10 | 只看該作者
Building Multiple Regression Models, contribute, presenting a topic and generating a discussion. In this paper, we propose the BarCamp as an innovative way of producing and communicating statistical knowledge, and we describe the experiment held at Politecnico di Milano, entitled “Technology Foresight and Statistics for the Future”.
7#
發(fā)表于 2025-3-22 19:13:40 | 只看該作者
Nonlinear Multiple Regression Models,d biochemical features of the nuclear DNA are used to investigate salient properties and determinants of change (mutations) in the human genome. The studies under review, all conducted by an interdisciplinary group of investigators at The Pennsylvania State University, required the use of a range of
8#
發(fā)表于 2025-3-22 22:21:10 | 只看該作者
9#
發(fā)表于 2025-3-23 01:35:54 | 只看該作者
Nonlinear Multiple Regression Models,everal canonical generalizations of non-Euclidean means. More involved data descriptors, for instance principal components generalize into even more complicated concepts. (Semi)-intrinsic statistical analysis allows to study inference on descriptors that can be represented as elements of another non
10#
發(fā)表于 2025-3-23 08:41:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 21:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿克陶县| 乐业县| 渭南市| 桂阳县| 临清市| 马龙县| 哈密市| 宁化县| 林西县| 锦屏县| 金湖县| 托克托县| 海淀区| 普安县| 平乐县| 麻栗坡县| 崇仁县| 清河县| 桑植县| 通辽市| 治县。| 裕民县| 沂南县| 尼木县| 漾濞| 峡江县| 莎车县| 章丘市| 阿拉尔市| 陵川县| 颍上县| 綦江县| 平安县| 拜泉县| 宁陵县| 襄城县| 许昌市| 鹤山市| 安丘市| 平乡县| 高平市|