找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Applied Mathematics; Ali R. Ansari Conference proceedings 2014 Springer International Publishing Switzerland 2014 Computationa

[復制鏈接]
查看: 51769|回復: 61
樓主
發(fā)表于 2025-3-21 17:52:19 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Advances in Applied Mathematics
影響因子2023Ali R. Ansari
視頻videohttp://file.papertrans.cn/147/146682/146682.mp4
發(fā)行地址Includes papers in the areas of mathematical biology, computational science and applications.Features work by leaders in broad field of applied mathematics.Content will be of interest to researchers i
學科分類Springer Proceedings in Mathematics & Statistics
圖書封面Titlebook: Advances in Applied Mathematics;  Ali R. Ansari Conference proceedings 2014 Springer International Publishing Switzerland 2014 Computationa
影響因子.This volume contains contributions from the Gulf International Conference in Applied Mathematics, held at the Gulf University for Science & Technology. The proceedings reflects the three major themes of the conference. The first of these was mathematical biology, including a keynote address by Professor Philip Maini. The second theme was computational science/numerical analysis, including a keynote address by Professor Grigorii Shishkin. The conference also addressed more general applications topics, with papers in business applications, fluid mechanics, optimization, scheduling problems and engineering applications, as well as a keynote by Professor Ali Nayfeh..
Pindex Conference proceedings 2014
The information of publication is updating

書目名稱Advances in Applied Mathematics影響因子(影響力)




書目名稱Advances in Applied Mathematics影響因子(影響力)學科排名




書目名稱Advances in Applied Mathematics網絡公開度




書目名稱Advances in Applied Mathematics網絡公開度學科排名




書目名稱Advances in Applied Mathematics被引頻次




書目名稱Advances in Applied Mathematics被引頻次學科排名




書目名稱Advances in Applied Mathematics年度引用




書目名稱Advances in Applied Mathematics年度引用學科排名




書目名稱Advances in Applied Mathematics讀者反饋




書目名稱Advances in Applied Mathematics讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:35:22 | 只看該作者
Yuji Ishikawa,Naoyuki Yamamoto,Hanako Hagioical conditions, such as chronic ischaemia in skeletal or cardiac muscle. Detailed tissue geometry, such as muscle fibre size, has been incorporated into indices of FCS by considering the distribution of Voronoi tessellations (‘capillary domains’) generated from vessel locations in a plane perpendic
板凳
發(fā)表于 2025-3-22 02:24:48 | 只看該作者
地板
發(fā)表于 2025-3-22 05:06:18 | 只看該作者
Brain Displacements and Deformationshe abuse may also have numerous effects on neurocognitive function resulting in HIV infection and ultimately AIDS. In this paper, a compartmental deterministic model for the transmission dynamics of HIV/AIDS in a community plagued with substance abuse is proposed. The nonlinear problem is tackled us
5#
發(fā)表于 2025-3-22 09:30:52 | 只看該作者
6#
發(fā)表于 2025-3-22 13:00:57 | 只看該作者
7#
發(fā)表于 2025-3-22 19:55:25 | 只看該作者
8#
發(fā)表于 2025-3-23 00:24:16 | 只看該作者
[18F]Fluorodopa Uptake in Brain, control problems. We improve a result obtained in Boulbrachene (Comput. Math. Appl. 45, 983–989, 2003) and establish the optimal .. convergence order making use of the concepts of subsolutions and discrete regularity.
9#
發(fā)表于 2025-3-23 01:30:28 | 只看該作者
10#
發(fā)表于 2025-3-23 07:42:50 | 只看該作者
https://doi.org/10.1007/978-981-10-0977-8le coefficients under the mixed conditions. The solution is obtained in terms of Taylor polynomials. This method is based on taking the truncated Taylor series of the function in equations and then substituting their matrix forms in the given equation. Hence, the result of matrix equation can be sol
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-21 01:31
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
大石桥市| 白水县| 建瓯市| 德州市| 桃园县| 宜阳县| 敦煌市| 黑山县| 黄龙县| 游戏| 化隆| 中卫市| 三江| 临沧市| 黄浦区| 台北市| 泸水县| 全州县| 法库县| 海盐县| 香港| 靖远县| 松桃| 晋江市| 哈巴河县| 沙雅县| 郧西县| 黄大仙区| 岚皋县| 进贤县| 凯里市| 鸡西市| 黄平县| 贵定县| 台南县| 高邑县| 京山县| 旬邑县| 芮城县| 阳新县| 偃师市|