找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Analysis, Probability and Mathematical Physics; Contributions of Non Sergio A. Albeverio,Wilhelm A. J. Luxemburg,Manfre Book 19

[復制鏈接]
樓主: 使固定
41#
發(fā)表于 2025-3-28 15:46:59 | 只看該作者
Ultradistributions and Hyperbolicity,In this paper it is shown that every invariance principle of probability theory is equivalent to a nonstandard construction of internal S-continuous processes, which all represent — up to an infinitesimal error — the limit process. This can be applied e.g. to obtain Anderson’s nonstandard construction of a Brownian motion on a hyperfinite set.
42#
發(fā)表于 2025-3-28 21:47:32 | 只看該作者
Extensions of Symmetric Operators,Two examples of how NSA may be useful in stochastics are considered. In Section 1 a new infinite dimensional multiplicative ergodic theorem for generalized cocycles is obtained; in Section 2 a new method of finding stationary solutions (invariant measures) to nonlinear stochastic parabolic equations is proposed.
43#
發(fā)表于 2025-3-29 01:00:00 | 只看該作者
https://doi.org/10.1007/978-94-015-8451-7Probability theory; Variance; calculus; differential equation; mathematical physics
44#
發(fā)表于 2025-3-29 06:02:27 | 只看該作者
978-90-481-4481-5Springer Science+Business Media B.V. 1995
45#
發(fā)表于 2025-3-29 08:17:05 | 只看該作者
Mathematics and Its Applicationshttp://image.papertrans.cn/a/image/146659.jpg
46#
發(fā)表于 2025-3-29 12:04:38 | 只看該作者
47#
發(fā)表于 2025-3-29 18:51:38 | 只看該作者
Theory of Elliptic Boundary Value Problems larger than the space of Schwartz distributions. As an example, we show that H. Lewy’s equation has a solution in this space whenever its right hand side is a classical smooth function or a Schwartz distribution.
48#
發(fā)表于 2025-3-29 20:20:51 | 只看該作者
49#
發(fā)表于 2025-3-30 00:27:28 | 只看該作者
50#
發(fā)表于 2025-3-30 06:03:41 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-16 18:41
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
罗城| 波密县| 育儿| 马公市| 沙洋县| 新津县| 克山县| 宁阳县| 隆回县| 淮北市| 岳普湖县| 彝良县| 横峰县| 始兴县| 潍坊市| 鹿泉市| 黄冈市| 随州市| 皮山县| 三门峡市| 鲜城| 苍南县| 大化| 齐齐哈尔市| 巫溪县| 莫力| 临潭县| 福鼎市| 阿合奇县| 平江县| 凤山县| 文成县| 淮安市| 佛山市| 萨嘎县| 五常市| 武安市| 西乌珠穆沁旗| 青冈县| 双峰县| 许昌县|