找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Analysis and Geometry; New Developments Usi Tao Qian,Thomas Hempfling,Frank Sommen Book 2004 Springer Basel AG 2004 Algebra.Cli

[復(fù)制鏈接]
查看: 42236|回復(fù): 57
樓主
發(fā)表于 2025-3-21 18:26:54 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Advances in Analysis and Geometry
期刊簡(jiǎn)稱New Developments Usi
影響因子2023Tao Qian,Thomas Hempfling,Frank Sommen
視頻videohttp://file.papertrans.cn/147/146658/146658.mp4
發(fā)行地址Contains most recent results and surveys of the state of the art in the discipline.Based on an ICM 2002 Satellite Meeting on Clifford Analysis and Its Applications in Macau
學(xué)科分類Trends in Mathematics
圖書封面Titlebook: Advances in Analysis and Geometry; New Developments Usi Tao Qian,Thomas Hempfling,Frank Sommen Book 2004 Springer Basel AG 2004 Algebra.Cli
影響因子On the 16th of October 1843, Sir William R. Hamilton made the discovery of the quaternion algebra H = qo + qli + q2j + q3k whereby the product is determined by the defining relations ·2 ·2 1 Z =] = - , ij = -ji = k. In fact he was inspired by the beautiful geometric model of the complex numbers in which rotations are represented by simple multiplications z ----t az. His goal was to obtain an algebra structure for three dimensional visual space with in particular the possibility of representing all spatial rotations by algebra multiplications and since 1835 he started looking for generalized complex numbers (hypercomplex numbers) of the form a + bi + cj. It hence took him a long time to accept that a fourth dimension was necessary and that commutativity couldn‘t be kept and he wondered about a possible real life meaning of this fourth dimension which he identified with the scalar part qo as opposed to the vector part ql i + q2j + q3k which represents a point in space.
Pindex Book 2004
The information of publication is updating

書目名稱Advances in Analysis and Geometry影響因子(影響力)




書目名稱Advances in Analysis and Geometry影響因子(影響力)學(xué)科排名




書目名稱Advances in Analysis and Geometry網(wǎng)絡(luò)公開度




書目名稱Advances in Analysis and Geometry網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Advances in Analysis and Geometry被引頻次




書目名稱Advances in Analysis and Geometry被引頻次學(xué)科排名




書目名稱Advances in Analysis and Geometry年度引用




書目名稱Advances in Analysis and Geometry年度引用學(xué)科排名




書目名稱Advances in Analysis and Geometry讀者反饋




書目名稱Advances in Analysis and Geometry讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:50:29 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:34:29 | 只看該作者
地板
發(fā)表于 2025-3-22 07:09:28 | 只看該作者
5#
發(fā)表于 2025-3-22 10:01:10 | 只看該作者
Miscellaneous aspects of modelling,. ∈ .. The boundary conditions are that the field be either normal or tangential at the boundary. The well-posedness of these problems is related to a Hodge decomposition of the space ..(Ω) corresponding to the operators . and . In developing this relationship, we derive a theory of nilpotent operat
6#
發(fā)表于 2025-3-22 13:08:03 | 只看該作者
Miscellaneous aspects of modelling,These distributions are “classical” in the sense that they were already introduced, albeit dispersed, in the literature on harmonic analysis and on Clifford analysis. Amongst these classical distributions are the fundamental solutions of the natural powers of the Laplace and the Dirac operators, and
7#
發(fā)表于 2025-3-22 19:56:06 | 只看該作者
Boundary Representation Modelling Techniquesre e.=1. The modified Dirac operator is introduced for . By ., where ′ is the main involution and . is given by the decomposition .. with ., . ∈.?.. A .+1-times continuously differentiable function f: Ω→.?., is called .-hypermonogenic in an open subsetΩof ., if ... = 0 outside the hyperplane .. = 0.
8#
發(fā)表于 2025-3-22 21:17:48 | 只看該作者
9#
發(fā)表于 2025-3-23 03:24:28 | 只看該作者
10#
發(fā)表于 2025-3-23 07:08:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 08:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
秦皇岛市| 梁山县| 屯留县| 连城县| 柳河县| 廊坊市| 清镇市| 栾川县| 昌平区| 黑龙江省| 营口市| 潮州市| 深圳市| 苗栗市| 绥中县| 定边县| 务川| 沙河市| 苗栗市| 尉氏县| 衢州市| 怀仁县| 化德县| 金昌市| 尼木县| 镇雄县| 永善县| 北安市| 南江县| 类乌齐县| 保定市| 连州市| 溧阳市| 稷山县| 五莲县| 祥云县| 喜德县| 杭锦后旗| 乐亭县| 左云县| 张掖市|