找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Algebra and Geometry; University of Hydera C. Musili Book 2003 Hindustan Book Agency (India) 2003

[復(fù)制鏈接]
樓主: 極大
31#
發(fā)表于 2025-3-27 00:53:41 | 只看該作者
Studies in History and Philosophy of Scienceynomial in one variable. A consequence of some of these results is that problems on . or .*-fibrations usually reduce to the situation where the base ring is one-dimensional. Some recent structure theorems on .*-fibrations over one-dimensional seminormal domains will be mentioned along with explicit examples of non-trivial .*-fibrations.
32#
發(fā)表于 2025-3-27 05:09:42 | 只看該作者
33#
發(fā)表于 2025-3-27 09:19:51 | 只看該作者
34#
發(fā)表于 2025-3-27 13:21:45 | 只看該作者
The method of weighted likelihood functionspace and graded modules over an exterior algebra. In particular I will describe the connection of free resolutions over the exterior algebra with cohomology of sheaves, and with the Chow form, topics taken from various joint work with Gunnar Floystad and Frank-Olaf Schreyer.
35#
發(fā)表于 2025-3-27 15:37:44 | 只看該作者
Hindustan Book Agency (India) 2003
36#
發(fā)表于 2025-3-27 20:46:47 | 只看該作者
37#
發(fā)表于 2025-3-28 00:03:07 | 只看該作者
Concluding Remarks to the Workshop SessionFormulas are obtained in terms of complete reductions for the bigraded components of local cohomology modules of bigraded Rees algebras of 0-dimensional ideals in 2-dimensional Cohen-Macaulay local rings. As a consequence, cohomological expressions for the coefficients of the Bhattacharya polynomial of such ideals are obtained.
38#
發(fā)表于 2025-3-28 03:47:24 | 只看該作者
https://doi.org/10.1007/978-3-322-85441-4We prove a strong Hasse principle for quadratic forms over quotient fields of comlete 2-dimensional local domains with algebraically closed residue fields. This generalizes a result of Jaworski [4].
39#
發(fā)表于 2025-3-28 07:10:25 | 只看該作者
40#
發(fā)表于 2025-3-28 12:52:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江门市| 泸定县| 阳春市| 保德县| 罗定市| 高尔夫| 遂宁市| 金门县| 广饶县| 阳春市| 元阳县| 浦东新区| 长泰县| 宁都县| 淅川县| 临汾市| 忻城县| 镇沅| 河西区| 靖远县| 清河县| 绍兴市| 长子县| 凌源市| 滦南县| 彰化市| 昆明市| 马边| 陆河县| 上蔡县| 边坝县| 龙南县| 松滋市| 伊吾县| 阜康市| 马山县| 汨罗市| 彰化县| 西乌珠穆沁旗| 锦州市| 宁阳县|