找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Topics in the Arithmetic of Elliptic Curves; Joseph H. Silverman Textbook 1994 Springer Science+Business Media New York 1994 Elli

[復制鏈接]
樓主: hearken
21#
發(fā)表于 2025-3-25 03:37:38 | 只看該作者
https://doi.org/10.1007/978-1-4612-0851-8Elliptic Curve; algebraic surface; arithmetic; Divisor; elliptic curve; modular curve
22#
發(fā)表于 2025-3-25 07:35:35 | 只看該作者
23#
發(fā)表于 2025-3-25 12:28:02 | 只看該作者
Arnold Frhr. v. Vietinghoff-Rieschon of the group of rational points and Siegel’s theorem on the finiteness of the set of integral points. This second volume continues our study of elliptic curves by presenting six important, but somewhat more specialized, topics.
24#
發(fā)表于 2025-3-25 19:16:58 | 只看該作者
25#
發(fā)表于 2025-3-25 23:06:24 | 只看該作者
N.L. Dobretsov,N.A. Kolchanov,V.V. Suslovor CM for short. Such curves have many special properties. For example, the endomorphism ring of a CM curve . is an order in a quadratic imaginary field ., and the .-invariant and torsion points of . generate abelian extensions of .. This is analogous to the way in which the torsion points of G.(?)
26#
發(fā)表于 2025-3-26 03:34:46 | 只看該作者
27#
發(fā)表于 2025-3-26 05:36:49 | 只看該作者
A.A. Oborin,L.M. Rubinstein,V.T. Khmurchik coefficients ., ., ., . ∈ .. This equation can be used to define a closed subscheme . An elementary property of closed subschemes of projective space says that every point of .(.) extends to give a point of .(.), that is, a section Spec(.) → ..
28#
發(fā)表于 2025-3-26 09:27:19 | 只看該作者
29#
發(fā)表于 2025-3-26 16:29:29 | 只看該作者
Advanced Topics in the Arithmetic of Elliptic Curves978-1-4612-0851-8Series ISSN 0072-5285 Series E-ISSN 2197-5612
30#
發(fā)表于 2025-3-26 19:51:57 | 只看該作者
Arnold Frhr. v. Vietinghoff-Rieschon of the group of rational points and Siegel’s theorem on the finiteness of the set of integral points. This second volume continues our study of elliptic curves by presenting six important, but somewhat more specialized, topics.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 11:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
丹寨县| 石嘴山市| 德清县| 凌海市| 沂源县| 临汾市| 横山县| 泰安市| 始兴县| 奉贤区| 左贡县| 淮北市| 宕昌县| 佳木斯市| 保靖县| 阳原县| 米脂县| 宝山区| 金门县| 大埔县| 屯门区| 闽侯县| 东兴市| 伊通| 新沂市| 德庆县| 修文县| 花莲市| 丰原市| 秦皇岛市| 乐都县| 嫩江县| 五河县| 德庆县| 胶州市| 调兵山市| 玉门市| 武穴市| 府谷县| 菏泽市| 太仓市|