找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Query Processing; Volume 1: Issues and Barbara Catania,Lakhmi C. Jain Book 2013 Springer-Verlag Berlin Heidelberg 2013 Approximate

[復制鏈接]
查看: 34336|回復: 53
樓主
發(fā)表于 2025-3-21 19:57:47 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Advanced Query Processing
期刊簡稱Volume 1: Issues and
影響因子2023Barbara Catania,Lakhmi C. Jain
視頻videohttp://file.papertrans.cn/147/146151/146151.mp4
發(fā)行地址Contains the latest research on advanced query processing.The state of the art of advanced query processing is presented in a handbook style.Written by leading experts in this field
學科分類Intelligent Systems Reference Library
圖書封面Titlebook: Advanced Query Processing; Volume 1: Issues and Barbara Catania,Lakhmi C. Jain Book 2013 Springer-Verlag Berlin Heidelberg 2013 Approximate
影響因子.This research book presents key developments, directions, and challenges concerning advanced query processing for both traditional and non-traditional data. A special emphasis is devoted to approximation and adaptivity issues as well as to the integration of heterogeneous data sources..?.The book will prove useful as a reference book for senior undergraduate or graduate courses on advanced data management issues, which have a special focus on query processing and data integration. It is aimed for technologists, managers, and developers who want to know more about emerging trends in advanced query processing..
Pindex Book 2013
The information of publication is updating

書目名稱Advanced Query Processing影響因子(影響力)




書目名稱Advanced Query Processing影響因子(影響力)學科排名




書目名稱Advanced Query Processing網絡公開度




書目名稱Advanced Query Processing網絡公開度學科排名




書目名稱Advanced Query Processing被引頻次




書目名稱Advanced Query Processing被引頻次學科排名




書目名稱Advanced Query Processing年度引用




書目名稱Advanced Query Processing年度引用學科排名




書目名稱Advanced Query Processing讀者反饋




書目名稱Advanced Query Processing讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:20:21 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:29:58 | 只看該作者
L. E. Wold,T. Spelsberg,N. Jiang,F. Simr, they do not obviously extend to much more challenging, unorganized and unpredictable data providers, typical of emerging data intensive applications and novel processing environments. For them, advanced query processing and data integration approaches have been proposed with the aim of still guar
地板
發(fā)表于 2025-3-22 08:10:16 | 只看該作者
5#
發(fā)表于 2025-3-22 11:28:03 | 只看該作者
https://doi.org/10.1007/978-3-642-74462-4We now survey existing algorithms for each query and show a ‘meta-algorithm’ framework for each query. The goal of this chapter is to show that how this framework and cost model enable us to (a) generalize existing algorithms and (b) observe important principles not observed from individual algorith
6#
發(fā)表于 2025-3-22 16:33:30 | 只看該作者
7#
發(fā)表于 2025-3-22 17:42:47 | 只看該作者
Origin and Dynamics of Lysosomes,d approximation techniques refer to the query to be executed and not to data representation as in the the past monolithic Geographic Information Systems and for this reason they are called . approximation techniques. The aim of this chapter is to survey such approximation techniques and to identify
8#
發(fā)表于 2025-3-22 21:20:13 | 只看該作者
9#
發(fā)表于 2025-3-23 01:23:21 | 只看該作者
Studies of the Maize Chloroplast Chromosome,data that needs to be processed.We first focus on progressive join algorithms for various data models. We introduce a framework for progressive join processing, called the Result Rate based Progressive Join (RRPJ) framework which can be used for join processing for various data models, and discuss i
10#
發(fā)表于 2025-3-23 07:58:00 | 只看該作者
https://doi.org/10.1007/978-3-642-81557-7on that for some applications, the precise results are not always required. Instead, the approximate results can provide a good enough estimation. Compared to the precise results, computing the approximate ones are more cost effective, especially for large-scale datasets. To generate the approximate
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 16:24
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
衡山县| 铜梁县| 山东| 宣化县| 老河口市| 石门县| 松溪县| 清水河县| 西丰县| 体育| 洪泽县| 柳州市| 泸定县| 元谋县| 昌宁县| 清原| 辽宁省| 庄河市| 藁城市| 长春市| 呼玛县| 景东| 丰顺县| 漳平市| 柯坪县| 翁源县| 无为县| 富民县| 扶绥县| 龙井市| 西盟| 泌阳县| 鹿泉市| 垦利县| 元阳县| 侯马市| 嘉定区| 随州市| 墨江| 双鸭山市| 松阳县|