找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Problems in Constructive Approximation; 3rd International Do Martin D. Buhmann,Detlef H. Mache Conference proceedings 2003 Springe

[復制鏈接]
樓主: Halloween
11#
發(fā)表于 2025-3-23 13:07:39 | 只看該作者
12#
發(fā)表于 2025-3-23 15:58:33 | 只看該作者
Thi Kim Thoa Thieu,Roderick Melnikon are uniformly bounded in [-1, 1] then for every .∈ .[-1, 1] and . > 0 there exists a sequence of polynomials ?. of degree ≤ .(l+.) (. ∈ N) which interpolates . at the points .. and it tends to . uniformly in [-1, 1]. The weighted versions of this result were proved in [19] and [18] using Freud-ty
13#
發(fā)表于 2025-3-23 18:28:28 | 只看該作者
Advanced Problems in Constructive Approximation978-3-0348-7600-1Series ISSN 0373-3149 Series E-ISSN 2296-6072
14#
發(fā)表于 2025-3-23 22:32:29 | 只看該作者
Svetlana Martynova,Denis Bugaevial bases by means of .. Such a construction leads to the problem of finding sets of (. + 1). points on the sphere that admit unique polynomial interpolation. Finally, we present a possible construction of polynomial wavelets on the sphere.
15#
發(fā)表于 2025-3-24 05:44:57 | 只看該作者
16#
發(fā)表于 2025-3-24 08:19:26 | 只看該作者
https://doi.org/10.1007/978-3-031-34960-7 suitable iterates of Mache operators. The preservation properties of Mache operators lead to qualitative properties of the solution of the associated Cauchy problem. A new Chernoff type approach to the semigroup is presented, as well as quantitative results related to it.
17#
發(fā)表于 2025-3-24 14:45:49 | 只看該作者
18#
發(fā)表于 2025-3-24 15:26:27 | 只看該作者
https://doi.org/10.1007/978-3-0348-7600-1Approximation; Interpolation; Numerical analysis; approximation theory; computational mathematics; fourie
19#
發(fā)表于 2025-3-24 22:21:43 | 只看該作者
978-3-0348-7602-5Springer Basel AG 2003
20#
發(fā)表于 2025-3-25 00:57:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
东阿县| 华蓥市| 纳雍县| 古田县| 兴海县| 定陶县| 南郑县| 永康市| 辉县市| 和平县| 乐山市| 德格县| 屯昌县| 银川市| 安龙县| 射阳县| 额尔古纳市| 阳泉市| 乌鲁木齐市| 临洮县| 万宁市| 嵊州市| 山阴县| 博乐市| 琼结县| 湘潭市| 罗源县| 英吉沙县| 营山县| 呼和浩特市| 青冈县| 雅江县| 常熟市| 波密县| 太康县| 惠州市| 裕民县| 汪清县| 庆元县| 大渡口区| 黄骅市|